
Fresnel Documentation
Release 0.13.1

The Regents of the University of Michigan

Mar 11, 2021

EXAMPLES

1 Gallery 3

2 Research 5

3 Features 9

4 Installation 17

5 Change log 21

6 User community 27

7 Introduction 29

8 Primitive properties 35

9 Material properties 41

10 Outline materials 49

11 Scene properties 55

12 Lighting setups 63

13 Sphere 77

14 Cylinder 81

15 Convex polyhedron 85

16 Mesh 91

17 Polygon 99

18 Box 105

19 Multiple geometries 111

20 Devices 115

21 Tracer methods 119

22 Interactive scene view 129

i

23 Rendering images in matplotlib 131

24 Visualizing GSD File 135

25 fresnel 139

26 Code style 165

27 License 169

28 Credits 171

29 Index 183

Python Module Index 185

Index 187

ii

Fresnel Documentation, Release 0.13.1

fresnel is a python library for path tracing publication quality images of soft matter simulations in real time. The
fastest render performance is possible on NVIDIA GPUs using their OptiX ray tracing engine. fresnel also supports
multi-core CPUs using Intel’s Embree ray tracing kernels. Path tracing enables high quality global illumination and
advanced rendering effects. Fresnel offers intuitive material parameters (like roughness, specular, and metal) and
simple predefined lighting setups (like cloudy and lightbox).

Here are a few samples of what fresnel can do:

EXAMPLES 1

https://developer.nvidia.com/optix
https://embree.github.io/
gallery/protomer.html
gallery/cuboid.html
gallery/sphere.html

Fresnel Documentation, Release 0.13.1

2 EXAMPLES

CHAPTER

ONE

GALLERY

3

gallery/protomer.html
gallery/cuboid.html

Fresnel Documentation, Release 0.13.1

4 Chapter 1. Gallery

gallery/sphere.html
gallery/gumballs.html

5

Fresnel Documentation, Release 0.13.1

CHAPTER

TWO

RESEARCH

2.1 Protomer

6 Chapter 2. Research

Fresnel Documentation, Release 0.13.1

Protomer on the cover of Nature Chemistry volume 11, issue 3:

• Ribbon geometry: geometry.Mesh

– material: roughness = 1.0, specular = 1.0, metal = 0, spec_trans = 0

– Generated with: ribbon

• Molecular surface: geometry.Mesh

– material: roughness = 2.0, specular = 0.95, metal = 0, spec_trans = 0.95

– Generated with MSMS

• Lighting: light.lightbox with background light

• Rendered with: tracer.Path: samples = 64, light_samples = 32 on the GPU

Author

Jens Glaser

2.1. Protomer 7

https://www.nature.com/nchem/volumes/11/issues/3
https://github.com/fogleman/ribbon
https://mgl.scripps.edu/people/sanner/html/msms_home.html

Fresnel Documentation, Release 0.13.1

8 Chapter 2. Research

9

Fresnel Documentation, Release 0.13.1

CHAPTER

THREE

FEATURES

3.1 Cuboids

10 Chapter 3. Features

Fresnel Documentation, Release 0.13.1

Cuboid example script:

• Geometry: geometry.ConvexPolyhedron: outline_width = 0.015

– material: roughness = 0.1, specular = 1, metal = 0, spec_trans = 0

– outline_material: roughness = 0.1, metal = 1, spec_trans = 0, color = (0.95,0.93,0.88)

– position, orientation: output of a HOOMD simulation

• Lighting: light.lightbox

• Rendered with: tracer.Path: samples = 256, light_samples = 16

Source code

"""Cuboid example scene."""

import fresnel
import numpy
import PIL
import sys

data = numpy.load('cuboids.npz')

scene = fresnel.Scene()
scene.lights = fresnel.light.lightbox()
W, H, D = data['width']
poly_info = fresnel.util.convex_polyhedron_from_vertices([

[-W, -H, -D],
[-W, -H, D],
[-W, H, -D],
[-W, H, D],
[W, -H, -D],
[W, -H, D],
[W, H, -D],
[W, H, D],

])

geometry = fresnel.geometry.ConvexPolyhedron(scene,
poly_info,
position=data['position'],
orientation=data['orientation'],
outline_width=0.015)

geometry.material = fresnel.material.Material(color=fresnel.color.linear(
[0.1, 0.1, 0.6]),

roughness=0.1,
specular=1)

geometry.outline_material = fresnel.material.Material(color=(0.95, 0.93, 0.88),
roughness=0.1,
metal=1.0)

scene.camera = fresnel.camera.Orthographic.fit(scene, view='front')
out = fresnel.pathtrace(scene, samples=64, light_samples=32, w=580, h=580)
PIL.Image.fromarray(out[:], mode='RGBA').save('cuboid.png')

if len(sys.argv) > 1 and sys.argv[1] == 'hires':
out = fresnel.pathtrace(scene,

samples=256,
(continues on next page)

3.1. Cuboids 11

http://glotzerlab.engin.umich.edu/hoomd-blue/

Fresnel Documentation, Release 0.13.1

(continued from previous page)

light_samples=16,
w=1380,
h=1380)

PIL.Image.fromarray(out[:], mode='RGBA').save('cuboid-hires.png')

Author

Joshua A. Anderson

3.2 Spheres

12 Chapter 3. Features

Fresnel Documentation, Release 0.13.1

Spheres example script:

• Geometry: geometry.Sphere: radius = 0.5, outline_width = 0.1

– material: roughness = 0.8, specular = 0.2, metal = 0, spec_trans = 0

– outline_material: solid = 1, color = (0,0,0)

– positions: output of a HOOMD simulation

• Lighting: light.cloudy

• Rendered with: tracer.Path: samples = 256, light_samples = 16

Source code

"""Sphere example scene."""

import fresnel
import numpy
import PIL
import sys

data = numpy.load('spheres.npz')

scene = fresnel.Scene()
scene.lights = fresnel.light.cloudy()

geometry = fresnel.geometry.Sphere(scene,
position=data['position'],
radius=0.5,
outline_width=0.1)

geometry.material = fresnel.material.Material(color=fresnel.color.linear(
[0.1, 0.8, 0.1]),

roughness=0.8,
specular=0.2)

scene.camera = fresnel.camera.Orthographic.fit(scene)
out = fresnel.pathtrace(scene, samples=64, light_samples=32, w=580, h=580)
PIL.Image.fromarray(out[:], mode='RGBA').save('sphere.png')

if len(sys.argv) > 1 and sys.argv[1] == 'hires':
out = fresnel.pathtrace(scene,

samples=256,
light_samples=16,
w=1380,
h=1380)

PIL.Image.fromarray(out[:], mode='RGBA').save('sphere-hires.png')

3.2. Spheres 13

http://glotzerlab.engin.umich.edu/hoomd-blue/

Fresnel Documentation, Release 0.13.1

Author

Joshua A. Anderson

3.3 Gumballs

Spheres rendered as gumballs made from a Monte Carlo simulation with HOOMD.

• Geometry: geometry.Sphere: radius = 0.5

– material: primitive_color_mix = 1.0, roughness = 0.2, specular = 0.8

– positions: output of a HOOMD simulation

14 Chapter 3. Features

https://glotzerlab.engin.umich.edu/hoomd-blue/
http://glotzerlab.engin.umich.edu/hoomd-blue/

Fresnel Documentation, Release 0.13.1

– colors: randomly assigned from a set of gumball colors

• Lighting: light.lightbox with an additional light

• Rendered with: tracer.Path: samples = 256, light_samples = 64 on the GPU

Source code

"""Gumballs example scene."""

import fresnel
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import PIL
import sys

First, we create a color map for gumballs.
colors = [

'#e56d60',
'#ee9944',
'#716e80',
'#eadecd',
'#cec746',
'#c0443f',
'#734d56',
'#5d5f7b',
'#ecb642',
'#8a9441',

]
cmap = LinearSegmentedColormap.from_list(name='gumball',

colors=colors,
N=len(colors))

Next, we gather information needed for the geometry.
position = np.load('gumballs.npz')['position']
np.random.seed(123)
color = fresnel.color.linear(cmap(np.random.rand(len(position))))
material = fresnel.material.Material(

primitive_color_mix=1.0,
roughness=0.2,
specular=0.8,

)

We create a fresnel scene and its geometry.
scene = fresnel.Scene()

geometry = fresnel.geometry.Sphere(
scene,
position=position,
radius=0.5,
color=color,
material=material,

)

Configure camera and lighting.
scene.camera = fresnel.camera.Perspective(position=(0, 0, 25),

look_at=(0, 0, 0),

(continues on next page)

3.3. Gumballs 15

Fresnel Documentation, Release 0.13.1

(continued from previous page)

up=(0, 1, 0),
focal_length=0.5,
f_stop=0.25)

scene.camera.focus_on = (0, 0, 5.6)
scene.lights = fresnel.light.lightbox()
scene.lights.append(

fresnel.light.Light(direction=(0.3, -0.3, 1),
color=(0.5, 0.5, 0.5),
theta=np.pi))

Execute rendering.
out = fresnel.pathtrace(scene, w=600, h=600, samples=128, light_samples=64)
PIL.Image.fromarray(out[:], mode='RGBA').save('gumballs.png')

if len(sys.argv) > 1 and sys.argv[1] == 'hires':
out = fresnel.pathtrace(scene,

w=1500,
h=1500,
samples=256,
light_samples=64)

PIL.Image.fromarray(out[:], mode='RGBA').save('gumballs-hires.png')

Author

Bradley Dice

16 Chapter 3. Features

CHAPTER

FOUR

INSTALLATION

Fresnel binaries are available in the glotzerlab-software Docker/Singularity images and in packages on conda-forge.
You can also compile fresnel from source.

4.1 Binaries

4.1.1 Anaconda package

Fresnel is available on conda-forge. To install, first download and install miniconda. Then add the conda-forge
channel and install fresnel:

$ conda config --add channels conda-forge
$ conda install fresnel

jupyter and matplotlib are required to execute the fresnel example notebooks:

$ conda install jupyter matplotlib

Note: The fresnel package on conda-forge does not support GPUs

4.1.2 Singularity / Docker images

See the glotzerlab-software documentation for container usage information and cluster specific instructions.

4.2 Compile from source

4.2.1 Obtain the source

Download source releases directly from the web: https://glotzerlab.engin.umich.edu/downloads/fresnel:

$ curl -O https://glotzerlab.engin.umich.edu/downloads/fresnel/fresnel-v0.13.1.tar.gz

Or, clone using git:

$ git clone --recursive https://github.com/glotzerlab/fresnel

17

https://glotzerlab-software.readthedocs.io
https://hub.docker.com/
https://www.sylabs.io/
https://conda-forge.org/
https://conda-forge.org/
http://conda.pydata.org/miniconda.html
https://github.com/glotzerlab/fresnel-examples
https://glotzerlab-software.readthedocs.io/
https://glotzerlab.engin.umich.edu/downloads/fresnel

Fresnel Documentation, Release 0.13.1

Fresnel uses git submodules. Either clone with the --recursive option, or execute git submodule update
--init to fetch the submodules.

4.2.2 Configure a virtual environment

When using a shared Python installation, create a virtual environment where you can install fresnel:

$ python3 -m venv /path/to/virtual/environment --system-site-packages

Activate the environment before configuring and before executing fresnel scripts:

$ source /path/to/virtual/environment/bin/activate

Tell CMake to search in the virtual environment first:

$ export CMAKE_PREFIX_PATH=/path/to/virtual/environment

Note: Other types of virtual environments (such as conda) may work, but are not thoroughly tested.

4.2.3 Install Prerequisites

fresnel requires:

• C++14 capable compiler

• CMake >= 3.8

• pybind11 >= 2.2

• Python >= 3.6

• numpy

• Qhull >= 2015.2

• For CPU execution (required when ENABLE_EMBREE=ON):

– Intel TBB >= 4.3.20150611

– Intel Embree >= 3.0.0

• For GPU execution (required when ENABLE_OPTIX=ON):

– OptiX == 6.0

– CUDA >= 10

ENABLE_EMBREE (defaults ON) and ENABLE_OPTIX (defaults OFF) are orthogonal settings, either or both may
be enabled.

Additional packages may be needed:

• pyside2

– Required t.o enable interactive widgets. (runtime)

• pillow

– Required to display rendered output in Jupyter notebooks automatically. (runtime)

– Required to execute unit tests.

18 Chapter 4. Installation

https://docs.python.org/3/library/venv.html

Fresnel Documentation, Release 0.13.1

• pytest

– Required to execute unit tests.

• sphinx, sphinx_rtd_theme, and nbspinx

– Required to build the user documentation.

• doxygen

– Requited to build developer documentation.

Install these tools with your system or virtual environment package manager. fresnel developers have had success
with pacman (arch linux), apt-get (ubuntu), Homebrew (macOS), and MacPorts (macOS):

$ your-package-manager install cmake doxygen embree pybind11 python python-pillow
→˓python-pytest python-sphinx python-sphinx_rtd_theme python-nbsphinx intell-tbb qhull

Typical HPC cluster environments provide python, numpy, and cmake via a module system:

$ module load gcc python cmake

Note: Packages may be named differently, check your system’s package list. Install any -dev packages as needed.

Tip: You can install numpy and other python packages into your virtual environment:

python3 -m pip install numpy

4.2.4 Compile

Configure with cmake and compile with make:

$ cd /path/to/fresnel
$ mkdir build
$ cd build
$ cmake ../
$ make install -j10

By default, fresnel builds the Embree (CPU) backend. Pass -DENABLE_OPTIX=ON to cmake to enable the GPU
accelerated OptiX backend.

4.2.5 Run tests

To run tests, execute pytest in the build directory or in an environment where fresnel is installed to run all tests.

$ pytest --pyargs fresnel

4.2. Compile from source 19

https://www.archlinux.org/
https://ubuntu.com/
https://brew.sh/
https://www.macports.org/

Fresnel Documentation, Release 0.13.1

4.2.6 Build user documentation

Build the user documentation with sphinx:

$ cd /path/to/fresnel
$ cd doc
$ make html
$ open build/html/index.html

4.2.7 Build C++ Documentation

To build the developer documentation, execute doxygen in the repository root. It will write HTML output in
devdoc/html/index.html.

20 Chapter 4. Installation

CHAPTER

FIVE

CHANGE LOG

fresnel releases follow semantic versioning.

5.1 v0.x

5.1.1 v0.13.1 (2021-03-11)

Fixed

• Add missing version module

5.1.2 v0.13.0 (2021-03-11)

Added

• Perspective camera.

• Depth of field effect.

Changed

• Reduce latency in interact.SceneView while rotating the view.

• Improve user experience with mouse rotations in interact.SceneView.

• [breaking] - Moved camera.orthographic to camera.Orthographic.

• [breaking] - Moved camera.fit to camera.Orthographic.fit.

Removed

• [breaking] - Removed “auto” camera in Scene. Use camera.Orthographic.fit

5.1.3 v0.12.0 (2020-02-27)

Added

• preview and tracer.Preview accept a boolean flag anti_alias to enable or disable anti-aliasing.

Changed

• preview and tracer.Preview enable anti-alisasing by default.

• Python, Cython, and C code must follow strict style guidelines.

• Renamed util.array to util.Array

21

https://github.com/glotzerlab/fresnel
https://semver.org/

Fresnel Documentation, Release 0.13.1

• Renamed util.image_array to util.ImageArray

• Converted interact.SceneView.setScene to a property: scene

Removed

• preview and tracer.Preview no longer accept the aa_level argument - use anti_alias.

5.1.4 v0.11.0 (2019-10-30)

Added

• Added box geometry convenience class Box.

Removed

• Support for Python 3.5.

Fixed

• Compile on systems where libqhullcpp.a is missing or broken.

• Find Embree headers when they are not in the same path as TBB.

5.1.5 v0.10.1 (2019-09-05)

Fixed

• Restore missing examples on readthedocs.

5.1.6 v0.10.0 (2019-08-19)

Changed

• CMake >= 3.8 is required at build time.

• pybind11 >= 2.2 is required at build time.

• qhull >= 2015 is required.

• install to the Python site-packages directory by default.

• CI tests execute on Microsoft Azure Pipelines.

Fixed

• Improved installation documentation.

5.1.7 v0.9.0 (2019-04-30)

• Added support for linearizing colors of shape (4,).

• Improve examples.

22 Chapter 5. Change log

Fresnel Documentation, Release 0.13.1

5.1.8 v0.8.0 (2019-03-05)

• Documentation improvements.

• Add geometry.Polygon: Simple and/or rounded polygons in the z=0 plane.

• API breaking changes:

– Remove: geometry.Prism

5.1.9 v0.7.1 (2019-02-05)

• Fix conda-forge build on mac

5.1.10 v0.7.0 (2019-02-05)

• Add util.convex_polyhedron_from_vertices: compute convex polyhedron plane origins and nor-
mals given a set of vertices

• Improve documentation

• Add interact.SceneView: pyside2 widget for interactively rendering scenes with path tracing

• Add geometry.Mesh: Arbitrary triangular mesh geometry, instanced with N positions and orientations

• fresnel development is now hosted on github: https://github.com/glotzerlab/fresnel/

• Improve light.lightbox lighting setup

• API breaking changes:

– geometry.ConvexPolyhedron arguments changed. It now accepts polyhedron information as a
dictionary.

5.1.11 v0.6.0 (2018-07-06)

• Implement tracer.Path on the GPU.

• Implement ConvexPolyhedron geometry on the GPU.

• Improve path tracer performance with Russian roulette termination.

• Compile warning-free.

• Fix sphere intersection test bugs on the GPU.

• tracer.Path now correctly starts sampling over when resized.

• Wrap C++ code with pybind 2.2

• Make documentation available on readthedocs: http://fresnel.readthedocs.io

• Fresnel is now available on conda-forge: https://anaconda.org/conda-forge/fresnel

• embree >= 3.0 is now required for CPU support

• Improve documentation

5.1. v0.x 23

https://github.com/glotzerlab/fresnel/
http://fresnel.readthedocs.io
https://anaconda.org/conda-forge/fresnel

Fresnel Documentation, Release 0.13.1

5.1.12 v0.5.0 (2017-07-27)

• Add new lighting setups

– lightbox

– cloudy

– ring

• Adjust brightness of lights in existing setups

• Remove clearcoat material parameter

• Add spec_trans material parameter

• Add Path tracer to render scenes with indirect lighting, reflections, and transparency (CPU-only)

• Add ConvexPolyhedron geometry (CPU-only, beta API, subject to change)

• Add fresnel.preview function to easily generate Preview traced renders with one line

• Add fresnel.pathtrace function to easily generate Path traced renders with one line

• Add anti-aliasing (always on for the Path tracer, set aa_level > 0 to enable for Preview)

• API breaking changes:

– render no longer exists. Use preview or pathtrace.

– tracer.Direct is now tracer.Preview.

CPU-only features will be implemented on the GPU in a future release.

5.1.13 v0.4.0 (2017-04-03)

• Enforce requirement: Embree >= 2.10.0

• Enforce requirement Pybind =1.8.1

• Enforce requirement TBB >= 4.3

• Rewrite camera API, add camera.fit to fit the scene

• scenes default to an automatic fit camera

• Implement area lights, add default lighting setups

• Scene now supports up to 4 lights, specified in camera space

• Implement Disney’s principled BRDF

• Tracer.histogram computes a histogram of the rendered image

• Tracer.enable_highlight_warning highlights overexposed pixels with a given warning color

• Device.available_modes lists the available execution modes

• Device.available_gpus lists the available GPUs

• Device can now be limited to n GPUs

• API breaking changes:

– camera.Orthographic is now camera.orthographic

– Device now takes the argument n instead of limit

24 Chapter 5. Change log

Fresnel Documentation, Release 0.13.1

– Scene no longer has a light_direction member

5.1.14 v0.3.0 (2017-03-09)

• Suppress “cannot import name” messages

• Support Nx3 and Nx4 inputs to color.linear

5.1.15 v0.2.0 (2017-03-03)

• Parallel rendering on the CPU

• Fix PTX file installation

• Fix python 2.7 support

• Unit tests

• Fix bug in sphere rendering on GPU

5.1.16 v0.1.0 (2017-02-02)

• Prototype API

• Sphere geometry

• Prism geometry

• outline materials

• diffuse materials

• Direct tracer

5.1. v0.x 25

Fresnel Documentation, Release 0.13.1

26 Chapter 5. Change log

CHAPTER

SIX

USER COMMUNITY

6.1 fresnel-users mailing list

Subscribe to the fresnel-users mailing list to receive release announcements, post questions for advice on using the
software, and discuss potential new features.

6.2 Issue tracker

File bug reports on fresnel’s issue tracker.

6.3 Contribute

fresnel is an open source project. Contributions are accepted via pull request to fresnel’s github repository. Please
review CONTRIBUTING.MD in the repository before starting development. You are encouraged to discuss your
proposed contribution with the fresnel user and developer community who can help you design your contribution to
fit smoothly into the existing ecosystem.

27

https://groups.google.com/d/forum/fresnel-users
https://github.com/glotzerlab/fresnel/issues
https://github.com/glotzerlab/fresnel

Fresnel Documentation, Release 0.13.1

28 Chapter 6. User community

CHAPTER

SEVEN

INTRODUCTION

Fresnel is a python library that can ray trace publication quality images in real time. It provides a simple python API
to define a scene consisting of any number of geometry primitives and render it to an output image.

To start, import the fresnel python module.

[1]: import fresnel

7.1 Define a scene

A Scene defines a coordinate system, the camera view, the light sources, and contains a number of geometry prim-
itives. Create a new Scene class instance. Scenes come with a default automatic camera that fits the geometry and a
default set of lights.

[2]: scene = fresnel.Scene()

7.2 Add geometry to the scene

A Scene may consist of any number of geometry objects. Each geometry object consists of N primitives of the same
type, and a material that describes how the primitives interact with light sources. Create 8 spheres with radius 1.0.

[3]: geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)

Geometry objects have a number of per-primitive attributes. These are exposed with an interface compatible with
numpy arrays, and can copy data from numpy arrays efficiently. Set the positions of the spheres:

[4]: geometry.position[:] = [[1,1,1],
[1,1,-1],
[1,-1,1],
[1,-1,-1],
[-1,1,1],
[-1,1,-1],
[-1,-1,1],
[-1,-1,-1]]

Set the material of the geometry object to a rough blue surface:

[5]: geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.
→˓9]),

roughness=0.8)

29

Fresnel Documentation, Release 0.13.1

7.3 Set the camera

The camera defines the view of the scene. fresnel can auto-fit a camera to the scene’s geometry:

[6]: scene.camera = fresnel.camera.Orthographic.fit(scene)

7.4 Render the scene

preview quickly renders the scene from the view point of the camera. Anti-aliasing is on by default to smooth edges
in the image.

[7]: fresnel.preview(scene)

[7]:

Disable anti-aliasing if you desire a quicker render.

[8]: fresnel.preview(scene, anti_alias=False)

30 Chapter 7. Introduction

Fresnel Documentation, Release 0.13.1

[8]:

preview only applies direct lighting. Use pathtrace to account for indirect lighting. (anti-aliasing is always enabled
when path tracing).

[9]: fresnel.pathtrace(scene)

[9]:

The resulting image is noisy. Increase the number of light samples to obtain a clean image.

7.4. Render the scene 31

Fresnel Documentation, Release 0.13.1

[10]: fresnel.pathtrace(scene, light_samples=40)

[10]:

7.5 Save output

preview and pathtrace return output buffers that can be used like HxWx4 RGBA numpy arrays. You can pass this
standard format on to other python libraries that work images (e.g. matplotlib).

[11]: out = fresnel.preview(scene)
print(out[:].shape)
print(out[:].dtype)

(370, 600, 4)
uint8

Use Pillow to save the rendered output to a png file with transparency.

[12]: import PIL

[13]: image = PIL.Image.fromarray(out[:], mode='RGBA')
image.save('output.png')

To save a JPEG, create an RGB image. This ignores the alpha channel, so the scene background color will show.

[14]: image = PIL.Image.fromarray(out[:,:,0:3], mode='RGB')
image.save('output.jpeg')

This is what output.jpeg looks like (the default background color is black):

32 Chapter 7. Introduction

https://matplotlib.org/
https://pillow.readthedocs.io

Fresnel Documentation, Release 0.13.1

[15]: import IPython.display
IPython.display.Image('output.jpeg')

[15]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

7.5. Save output 33

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

34 Chapter 7. Introduction

CHAPTER

EIGHT

PRIMITIVE PROPERTIES

Each geometry type specifies a number of per-primitive properties. For example, the Sphere geometry has per-
primitive position, radius, and color.

[1]: import fresnel
scene = fresnel.Scene()

8.1 Setting properties when creating the geometry

Any of the properties may be set when the geometry is created, or they may be left as default values.

[2]: geometry = fresnel.geometry.Sphere(scene,
position = [[1,0,1],

[1,0,-1],
[-1,0,1],
[-1,0,-1]],

radius=1.0,
material = fresnel.material.Material(color=fresnel.

→˓color.linear([0.42,0.267,1]))
per-primitive color left default
)

scene.camera = fresnel.camera.Orthographic.fit(scene)

[3]: fresnel.preview(scene)

35

Fresnel Documentation, Release 0.13.1

[3]:

8.2 Changing properties after creation

Access the per-primitive properties as if they were numpy arrays. The radius property for the Sphere geometry sets
the radius of each primitive.

[4]: geometry.radius[:] = [0.5, 0.6, 0.8, 1.0]

[5]: fresnel.preview(scene)

36 Chapter 8. Primitive properties

Fresnel Documentation, Release 0.13.1

[5]:

The position property sets the position of each sphere in the scene’s coordinate system.

[6]: geometry.position[:] = [[1.5,0,1],
[1.5,0,-1],
[-1.5,0,1],
[-1.5,0,-1]]

[7]: fresnel.preview(scene)

8.2. Changing properties after creation 37

Fresnel Documentation, Release 0.13.1

[7]:

The color property sets a per primitive color. The geometry material color and the primitive color are mixed with
fraction primitive_color_mix. A value of 1.0 selects the primitive color, 0.0 selects the material color and values in
between mix the colors.

[8]: geometry.material.primitive_color_mix = 1.0
geometry.color[:] = fresnel.color.linear([[1,1,1], [0,0,1], [0,1,0], [1,0,0]])

[9]: fresnel.preview(scene)

38 Chapter 8. Primitive properties

Fresnel Documentation, Release 0.13.1

[9]:

[10]: geometry.material.primitive_color_mix = 0.5

[11]: fresnel.preview(scene)

[11]:

8.2. Changing properties after creation 39

Fresnel Documentation, Release 0.13.1

8.3 Reading primitive properties

Primitive properties may be read as well as written.

[12]: geometry.radius[:]

[12]: array([0.5, 0.6, 0.8, 1.], dtype=float32)

[13]: geometry.position[:]

[13]: array([[1.5, 0. , 1.],
[1.5, 0. , -1.],
[-1.5, 0. , 1.],
[-1.5, 0. , -1.]], dtype=float32)

[14]: geometry.color[:]

[14]: array([[1., 1., 1.],
[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]], dtype=float32)

8.4 Common errors

Primitive properties may be accessed like numpy arrays, but they may not be assigned directly.

[15]: geometry.radius = 1.0

AttributeError Traceback (most recent call last)
<ipython-input-15-020bd663bace> in <module>
----> 1 geometry.radius = 1.0

AttributeError: can't set attribute

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

40 Chapter 8. Primitive properties

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

NINE

MATERIAL PROPERTIES

Each geometry has an associated material. The material is a set of parameters that defines how light interacts with
the geometry. Here is a test scene to demonstrate these properties.

[1]: import fresnel
import math
device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
scene.camera = fresnel.camera.Orthographic.fit(scene)

9.1 Material color

The color of a material sets its base color. Default material parameters set a primarily diffuse material with light
specular highlights.

[2]: geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.9,0.714,0.
→˓169]))

[3]: fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

41

Fresnel Documentation, Release 0.13.1

[3]:

9.2 Solid color materials

Set the solid parameter to 1.0 to disable material interaction with light. A solid material has no shading applied and
always displays as color.

[4]: geometry.material.solid = 1.0

[5]: fresnel.preview(scene, w=300, h=300)

[5]:

42 Chapter 9. Material properties

Fresnel Documentation, Release 0.13.1

9.3 Geometry / primitive color mixing

Set primitive_color_mix to any value in the range 0.0 to 1.0 to control the amount that the per-primitive colors mix
with the geometry color.

[6]: geometry.material.primitive_color_mix = 0.5
geometry.color[::2] = fresnel.color.linear([0,0,0])
geometry.color[1::2] = fresnel.color.linear([1,1,1])

[7]: fresnel.preview(scene, w=300, h=300)

[7]:

Typical use cases utilize values of either 0.0 (force a single color defined by the material) or 1.0 (force the per primitive
color.)

[8]: geometry.material.primitive_color_mix = 1.0

geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])

[9]: fresnel.preview(scene, w=300, h=300)

9.3. Geometry / primitive color mixing 43

Fresnel Documentation, Release 0.13.1

[9]:

To use a matplotlib color map, pass the output of the color map to fresnel.color.linear so the output colors
appear as intended.

[10]: import matplotlib, matplotlib.cm
import numpy
geometry.material.solid = 0.0
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0,
→˓vmax=1, clip=True),

cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))

[11]: fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

[11]:

44 Chapter 9. Material properties

Fresnel Documentation, Release 0.13.1

9.4 All properties

Materials have a number of intuitive properties. All are defined in a nominal range from 0 to 1, though some values
can be pushed past 1 for extremely strong effects.

• roughness - Set the roughness of the material. Recommend values >= 0.1.

• specular - Control the strength of the specular highlights

• metal - 0: dielectric materials (plastic, glass, etc. . .). 1: pure metals.

• spec_trans - Set the fraction of light that passes through the material.

Here are some examples of different material parameters.

[12]: scene2 = fresnel.Scene(device)
spheres = []
for i in range(11):

spheres.append(fresnel.geometry.Sphere(scene2, position = (i, 0, 0), radius=0.4))
spheres[i].material = fresnel.material.Material(color=(.1,.7,.1))

tracer = fresnel.tracer.Path(device=device, w=1000, h=75)

scene2.lights = [fresnel.light.Light(direction=(1,1,-1), color=(0.5, 0.5, 0.5)),
fresnel.light.Light(direction=(-1,-1,1), color=(0.5, 0.5, 0.5))]

scene2.camera = fresnel.camera.Orthographic.fit(scene2)

9.4.1 Examples

These examples are front lit from the lower left and back lit from the upper right.

Vary roughness in a specular material from 0.1 to 1.1

[13]: for i in range(11):
spheres[i].material.specular = 1.0
spheres[i].material.roughness = i/10+0.1

tracer.sample(scene2, samples=64, light_samples=40)

[13]:

Vary specular from 0 to 1 with constant roughness.

[14]: for i in range(11):
spheres[i].material.specular = i/10
spheres[i].material.roughness = 0.1
spheres[i].material.color=(.7,.1,.1)

tracer.sample(scene2, samples=64, light_samples=40)

[14]:

The following examples use cloudy lighting which places a bright hemisphere of light above the scene and a dim
hemisphere of light below the scene.

9.4. All properties 45

Fresnel Documentation, Release 0.13.1

Vary metal from 0 to 1 with a rough material. (metal materials look best when there is other geometry to reflect from
the surface)

[15]: for i in range(11):
spheres[i].material.specular = 1.0
spheres[i].material.color=(.7,.7,.7)
spheres[i].material.metal = i/10

scene2.lights = fresnel.light.cloudy()
tracer.sample(scene2, samples=64, light_samples=40)

[15]:

Vary spec_trans from 0 to 1 with all other quantities constant.

[16]: for i in range(11):
spheres[i].material.metal = 0.0
spheres[i].material.spec_trans = i/10
spheres[i].material.color=(.1,.1,.7)

tracer.sample(scene2, samples=64, light_samples=40)

[16]:

Execute this notebook with ipywidgets installed and use the panel below to explore the material parameters and how
they react to different lighting angles.

[17]: import ipywidgets

tracer.resize(450,450)

@ipywidgets.interact(color=ipywidgets.ColorPicker(value='#1c1c7f'),
primitive_color_mix=ipywidgets.FloatSlider(value=0.0, min=0.0,

→˓max=1.0, step=0.1, continuous_update=False),
roughness=ipywidgets.FloatSlider(value=0.3, min=0.1, max=1.0,

→˓step=0.1, continuous_update=False),
specular=ipywidgets.FloatSlider(value=0.5, min=0.0, max=1.0,

→˓step=0.1, continuous_update=False),
spec_trans=ipywidgets.FloatSlider(value=0.0, min=0.0, max=1.0,

→˓step=0.1, continuous_update=False),
metal=ipywidgets.FloatSlider(value=0, min=0.0, max=1.0, step=1.0,

→˓ continuous_update=False),
light_theta=ipywidgets.FloatSlider(value=5.5, min=0.0,

→˓max=2*math.pi, step=0.1, continuous_update=False),
light_phi=ipywidgets.FloatSlider(value=0.8, min=0.0, max=math.pi,

→˓ step=0.1, continuous_update=False))
def test(color, primitive_color_mix, roughness, specular, spec_trans, metal, light_
→˓theta, light_phi):

r = int(color[1:3], 16)/255;
g = int(color[3:5], 16)/255;
b = int(color[5:7], 16)/255;
scene.lights[0].direction = (math.sin(light_phi)*math.cos(-light_theta),

math.cos(light_phi),
math.sin(light_phi)*math.sin(-light_theta))

(continues on next page)

46 Chapter 9. Material properties

Fresnel Documentation, Release 0.13.1

(continued from previous page)

scene.lights[1].theta = math.pi
geometry.material = fresnel.material.Material(color=fresnel.color.linear([r,g,b]),

primitive_color_mix=primitive_color_
→˓mix,

roughness=roughness,
metal=metal,
specular=specular,
spec_trans=spec_trans

)
return tracer.sample(scene, samples=64, light_samples=1)

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

9.4. All properties 47

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

48 Chapter 9. Material properties

CHAPTER

TEN

OUTLINE MATERIALS

Each geometry has an associated outline material and an outline width. The outline material has all the same
attributes as a normal material, but it is only applied in a thin line around each geometry primitive. The width of that
line is the outline width.

[1]: import fresnel
import math
scene = fresnel.Scene()
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0,
→˓color=fresnel.color.linear([0,0,0]))
fresnel.light.cloudy();
scene.camera = fresnel.camera.Orthographic.fit(scene)

10.1 Enabling outlines

The default outline width is 0. Set a non-zero outline width to enable the outlines.

[2]: geometry.outline_width

[2]: 0.0

The outline width is in distance units in the same coordinate system as scene. The is width units wide perpendicular
to the view direction. Outlines enhance the separation between primitives visually. They work well with diffuse and
solid colored primitives.

[3]: geometry.outline_width = 0.12

[4]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

49

Fresnel Documentation, Release 0.13.1

[4]:

[5]: geometry.material.solid = 1.0

[6]: fresnel.preview(scene, w=300, h=300)

[6]:

50 Chapter 10. Outline materials

Fresnel Documentation, Release 0.13.1

10.2 Outline material properties

The default outline material is a solid black.

[7]: geometry.outline_material.color

[7]: (0.0, 0.0, 0.0)

[8]: geometry.outline_material.solid

[8]: 1.0

[9]: geometry.outline_material.primitive_color_mix

[9]: 0.0

The outline material has all the same properties as a normal material.

[10]: geometry.outline_material.color = fresnel.color.linear(fresnel.color.linear([0.08,0.
→˓341,0.9]))

[11]: fresnel.preview(scene, w=300, h=300)

[11]:

Outlines may be colored by the primitives:

[12]: geometry.material.primitive_color_mix = 0.0
geometry.outline_material.primitive_color_mix = 1.0
geometry.outline_width = 0.4

[13]: fresnel.preview(scene, w=300, h=300)

10.2. Outline material properties 51

Fresnel Documentation, Release 0.13.1

[13]:

Outlines may have diffuse shading:

[14]: geometry.material.color = fresnel.color.linear([1,1,1])
geometry.material.solid = 0
geometry.outline_material.solid = 0

[15]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

[15]:

Or be metallic:

[16]: geometry.material.color = fresnel.color.linear([0.08,0.341,0.9])

geometry.outline_material.solid = 0
geometry.outline_material.color = [0.95,0.95,0.95]

(continues on next page)

52 Chapter 10. Outline materials

Fresnel Documentation, Release 0.13.1

(continued from previous page)

geometry.outline_material.roughness = 0.1
geometry.outline_material.metal = 1
geometry.outline_material.primitive_color_mix = 0.0
geometry.outline_width = 0.2

[17]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

[17]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

10.2. Outline material properties 53

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

54 Chapter 10. Outline materials

CHAPTER

ELEVEN

SCENE PROPERTIES

Each Scene has a background color and alpha, lights, and a camera.

[1]: import fresnel
import math
scene = fresnel.Scene()
position = []
for i in range(6):

position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.
→˓linear([1,0.874,0.169]))
geometry.outline_width = 0.12
scene.camera = fresnel.camera.Orthographic.fit(scene)

11.1 Background color and alpha

The default background color is black (0,0,0) and the background alpha is 0 (transparent).

[2]: scene.background_color

[2]: array([0., 0., 0.], dtype=float32)

[3]: scene.background_alpha

[3]: 0.0

The background color is applied to any pixel in the output image where no object is present. Change the background
alpha to only partially transparent:

[4]: scene.background_alpha = 0.5

[5]: fresnel.preview(scene)

55

Fresnel Documentation, Release 0.13.1

[5]:

Set a solid background color:

[6]: scene.background_alpha = 1.0
scene.background_color = fresnel.color.linear([0.592, 0.722, 0.98])

[7]: fresnel.preview(scene)

56 Chapter 11. Scene properties

Fresnel Documentation, Release 0.13.1

[7]:

11.2 Light sources

Light sources light the objects in the scene. Without lights, all objects are black.

[8]: scene.lights.clear()

[9]: fresnel.preview(scene)

11.2. Light sources 57

Fresnel Documentation, Release 0.13.1

[9]:

Fresnel defines several standard lighting setups that may be easily applied.

[10]: scene.lights = fresnel.light.butterfly()

[11]: fresnel.preview(scene)

[11]:

58 Chapter 11. Scene properties

Fresnel Documentation, Release 0.13.1

You can modify individual lights.

[12]: scene.lights[0].direction = (-1, 0, 1)

[13]: fresnel.preview(scene)

[13]:

11.3 Camera

The camera defines the view to render into the scene. The default camera is an orthographic camera at (0,0,100), look
at (0,0,0), and has a height of 100:

[14]: scene2 = fresnel.Scene()
print(scene2.camera)

fresnel.camera.Orthographic(position=(0.0, 0.0, 100.0), look_at=(0.0, 0.0, 0.0),
→˓up=(0.0, 1.0, 0.0), height=100.0)

You can automatically fit an orthographic camera to the scene with camera.Orthographic.fit. Call it after
defining all of the geometry in your scene.

[15]: scene.camera = fresnel.camera.Orthographic.fit(scene)

A camera is defined by its position, look-at point, up vector and height of the view into the scene. All of these
quantities are in scene coordinates.

[16]: scene.camera = fresnel.camera.Orthographic(position=(0,0,2), look_at=(0,0,0), up=(0,1,
→˓0), height=6)
fresnel.preview(scene)

11.3. Camera 59

Fresnel Documentation, Release 0.13.1

[16]:

You can modify these parameters individually.

[17]: scene.camera.position = (3, 0, 10)
scene.camera.look_at=(3,0,0)

[18]: fresnel.preview(scene)

60 Chapter 11. Scene properties

Fresnel Documentation, Release 0.13.1

[18]:

Print the full representation of the camera.

[19]: print(repr(scene.camera))

fresnel.camera.Orthographic(position=(3.0, 0.0, 10.0), look_at=(3.0, 0.0, 0.0), up=(0.
→˓0, 1.0, 0.0), height=6.0)

You can copy and paste this text to reproduce the same camera elsewhere.

[20]: scene.camera = fresnel.camera.Orthographic(position=(3.0, 0.0, 10.0),
look_at=(3.0, 0.0, 0.0),
up=(0.0, 1.0, 0.0),
height=6.0)

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

11.3. Camera 61

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

62 Chapter 11. Scene properties

CHAPTER

TWELVE

LIGHTING SETUPS

Each Scene has associated lights. The lights control how the objects in a scene is lit.

[1]: import fresnel
import math
import matplotlib, matplotlib.cm
from matplotlib import pyplot
%matplotlib inline
import numpy

device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(primitive_color_mix=1.0, color=(1,1,1))
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0,
→˓vmax=1, clip=True),

cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))
scene.camera = fresnel.camera.Orthographic.fit(scene, view='isometric')
tracer = fresnel.tracer.Path(device, w=450, h=450)

12.1 Lighting presets

Fresnel defines many lighting presets that use classic photography techniques to light the scene. Create a setup and
assign it to the Scene’s lights.

The images in these examples are noisy because of the small number of samples. Increase the number of samples to
obtain less noisy images.

63

Fresnel Documentation, Release 0.13.1

12.1.1 Light box

A light box lights the scene equally from all sides. This type of lighting is commonly used product photography.

[2]: scene.lights = fresnel.light.lightbox()
tracer.sample(scene, samples=64, light_samples=10)

[2]:

12.1.2 Cloudy

Cloudy lighting mimics a cloudy day. Strong light comes from all directions above, while weak light comes from
below.

[3]: scene.lights = fresnel.light.cloudy()
tracer.sample(scene, samples=64, light_samples=10)

64 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

[3]:

12.1.3 Rembrandt

Rembrandt lighting places the key light 45 degrees to one side and slightly up.

[4]: scene.lights = fresnel.light.rembrandt()
tracer.sample(scene, samples=64, light_samples=10)

12.1. Lighting presets 65

Fresnel Documentation, Release 0.13.1

[4]:

Use the side argument specify which side to place the key light on.

[5]: scene.lights = fresnel.light.rembrandt(side='left')
tracer.sample(scene, samples=64, light_samples=10)

66 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

[5]:

12.1.4 Loop lighting

Loop lighting places the key light slightly to one side and slightly up.

[6]: scene.lights = fresnel.light.loop()
tracer.sample(scene, samples=64, light_samples=10)

12.1. Lighting presets 67

Fresnel Documentation, Release 0.13.1

[6]:

12.1.5 Butterfly lighting

Butterfly lighting places the key light high above the camera.

[7]: scene.lights = fresnel.light.butterfly()
tracer.sample(scene, samples=64, light_samples=10)

68 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

[7]:

12.1.6 Ring lighting

The ring lighting setup provides a strong front area light. This type of lighting is common in fashion photography.

[8]: scene.lights = fresnel.light.ring()
tracer.sample(scene, samples=64, light_samples=10)

12.1. Lighting presets 69

Fresnel Documentation, Release 0.13.1

[8]:

12.2 Custom lights

You can define your own custom lights. Provide a direction vector pointing to the light in the coordinate system of the
camera (+x points to the right, +y points up, and +z points out of the screen). The light color defines both the color
(RGB) and the intensity of the light in a linear sRGB color space.

[9]: my_lights = [fresnel.light.Light(direction=(1,-1,1), color=(1,1,1))]
scene.lights = my_lights

[10]: tracer.sample(scene, samples=64, light_samples=10)

70 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

[10]:

The shadows are very dark. Add another light to fill them in. You can access the scene’s lights directly. The value
theta defines the half angle width of the light source. Large lights provide soft shadows.

[11]: scene.lights.append(fresnel.light.Light(direction=(0,0,1), color=(1,1,1), theta=3.14))
tracer.sample(scene, samples=64, light_samples=10)

12.2. Custom lights 71

Fresnel Documentation, Release 0.13.1

[11]:

This image is overexposed.

Highlight warnings show overexposed areas of the image as a special color (default: magenta).

[12]: tracer.enable_highlight_warning()
tracer.render(scene)

72 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

[12]:

If the histogram is blocking up at 1.0, there are overexposed highlights.

[13]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

Reduce the intensity of the light to correctly expose the image.

12.2. Custom lights 73

Fresnel Documentation, Release 0.13.1

[14]: scene.lights[1].color=(0.45,0.45,0.45)
tracer.sample(scene, samples=64, light_samples=10)

[14]:

Now there are no clipping warnings and the histogram shows a perfectly exposed image.

[15]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

74 Chapter 12. Lighting setups

Fresnel Documentation, Release 0.13.1

scene.lights has typical sequence like behavior. You can assign a sequence of Light objects to it, append lights
to it, and loop over the lights in it. For example, reverse the direction of every light:

[16]: for l in scene.lights:
d = l.direction;
l.direction = (-d[0], -d[1], -d[2])

[17]: scene.lights[1].color=(0.05,0.05,0.05)
tracer.disable_highlight_warning()
tracer.sample(scene, samples=64, light_samples=10)

12.2. Custom lights 75

Fresnel Documentation, Release 0.13.1

[17]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

76 Chapter 12. Lighting setups

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

THIRTEEN

SPHERE

[]: import fresnel
scene = fresnel.Scene()

The sphere geometry defines a set of N spheres. Each sphere has its own position, radius, and color.

[]: geometry = fresnel.geometry.Sphere(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.
→˓9]),

roughness=0.8)

13.1 Geometric properties

position defines the position of each sphere.

[]: geometry.position[:] = [[-2,0,0], [0, 0, 0], [3, 0, 0]]

radius sets the radius of each sphere.

[]: geometry.radius[:] = [0.5, 1.0, 1.5]

[5]: scene.camera = fresnel.camera.Orthographic.fit(scene, view='front', margin=0.5)
fresnel.preview(scene)

77

Fresnel Documentation, Release 0.13.1

[5]:

13.2 Color

color sets the color of each sphere (when when primitive_color_mix > 0)

[6]: geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0

[7]: fresnel.preview(scene)

78 Chapter 13. Sphere

Fresnel Documentation, Release 0.13.1

[7]:

13.3 Outlines

Outlines are applied on the outer edge of the sphere in the view plane.

[8]: geometry.outline_width = 0.05

[9]: fresnel.preview(scene)

13.3. Outlines 79

Fresnel Documentation, Release 0.13.1

[9]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

80 Chapter 13. Sphere

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

FOURTEEN

CYLINDER

[1]: import fresnel
scene = fresnel.Scene()

The cylinder geometry defines a set of N spherocylinders. Each spherocylinder is defined by two end points and has
its own radius, and end point colors.

[2]: geometry = fresnel.geometry.Cylinder(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.
→˓9]),

roughness=0.8)

14.1 Geometric properties

points defines the end points of each cylinder.

[3]: geometry.points[:] = [[[-5,-1,-1], [-2, 1, 1]],
[[1, -2, 1],[0, 2, -1]],
[[5, -1.5, 2], [3, 1.5, -2]]]

radius sets the radius of each spherocylinder.

[4]: geometry.radius[:] = [0.5, 1.0, 1.5]

[5]: scene.camera = fresnel.camera.Orthographic.fit(scene, view='front', margin=0.5)
fresnel.preview(scene)

81

Fresnel Documentation, Release 0.13.1

[5]:

14.2 Color

color sets the color of the end points of each cylinder (when primitive_color_mix > 0). The color transitions at the
midpoint.

[6]: geometry.color[:] = [[[0.9,0,0], [0.9, 0, 0]],
[[0, 0.9, 0], [0, 0.9, 0.9]],

[[0.9, 0.9, 0], [0, 0, 0.9]]]
geometry.material.primitive_color_mix = 1.0

[7]: fresnel.preview(scene)

82 Chapter 14. Cylinder

Fresnel Documentation, Release 0.13.1

[7]:

14.3 Outlines

Outlines are applied on the outer edge of the cylinder in the view plane.

[8]: geometry.outline_width = 0.05

[9]: fresnel.preview(scene)

14.3. Outlines 83

Fresnel Documentation, Release 0.13.1

[9]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

84 Chapter 14. Cylinder

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

FIFTEEN

CONVEX POLYHEDRON

[1]: import fresnel
import itertools
import math
import numpy as np
device = fresnel.Device()
scene = fresnel.Scene(device)

The convex polyhedron geometry defines a set of N convex polyhedra. The shape of all N polyhedra is identical
and defined by P planes. Each polyhedron has its own position, orientation, and color. You must also specify the
circumsphere radius r. Note that the information used to draw a convex polyhedron is easily obtained from it’s
vertices via the util.convex_polyhedron_from_vertices() utility function.

To construct a truncated cube:

[2]: # first get cube verts
pm = [-1, 1]
cube_verts = list(itertools.product(pm, repeat=3))
trunc_cube_verts = []
truncate by removing corners and adding vertices to edges
for p1, p2 in itertools.combinations(cube_verts, 2):

don't add points along any diagonals
match = (p1[0]==p2[0], p1[1]==p2[1], p1[2]==p2[2])
if match.count(False) == 1: # only 1 coordinate changes, not a diagonal

p1, p2 = np.array(p1), np.array(p2)
vec = p2 - p1
trunc_cube_verts.append(p1 + vec/3)
trunc_cube_verts.append(p1 + 2*vec/3)

[3]: c1 = fresnel.color.linear([0.70, 0.87, 0.54])*0.8
c2 = fresnel.color.linear([0.65,0.81,0.89])*0.8
colors = {8: c1, 3: c2}
poly_info = fresnel.util.convex_polyhedron_from_vertices(trunc_cube_verts)
for idx, fs in enumerate(poly_info['face_sides']):

poly_info['face_color'][idx] = colors[fs]
geometry = fresnel.geometry.ConvexPolyhedron(scene,

poly_info,
N=3

)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.
→˓9]),

roughness=0.8)

85

Fresnel Documentation, Release 0.13.1

15.1 Geometric properties

position defines the position of the center of each convex polyhedron.

[4]: geometry.position[:] = [[-3,0,0], [0, 0, 0], [3, 0, 0]]

orientation sets the orientation of each convex polyhedron as a quaternion

[5]: geometry.orientation[:] = [[1, 0, 0, 0],
[0.80777943, 0.41672122, 0.00255412, 0.41692838],
[0.0347298, 0.0801457, 0.98045, 0.176321]]

[6]: scene.camera = fresnel.camera.Orthographic.fit(scene, view='front', margin=0.8)
fresnel.preview(scene)

[6]:

15.2 Color

color sets the color of each individual convex polyhedron (when primitive_color_mix > 0 and color_by_face < 1)

[7]: geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0
fresnel.preview(scene)

86 Chapter 15. Convex polyhedron

Fresnel Documentation, Release 0.13.1

[7]:

Set color_by_face > 0 to color the faces of the polyhedra independently. poly_info['face_colors'] (i.e., the
output of convex_polyhedron_from_vertices, which we modified above) sets the color of each face. Above, we set the
color of the each face based on number of sides it has.

[8]: geometry.color_by_face = 1.0
fresnel.preview(scene)

15.2. Color 87

Fresnel Documentation, Release 0.13.1

[8]:

15.3 Outlines

Outlines are applied at the outer edge of each face.

[9]: geometry.outline_width = 0.02
fresnel.preview(scene)

88 Chapter 15. Convex polyhedron

Fresnel Documentation, Release 0.13.1

[9]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

[1]: import fresnel
import numpy
import matplotlib, matplotlib.cm

15.3. Outlines 89

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

90 Chapter 15. Convex polyhedron

CHAPTER

SIXTEEN

MESH

The mesh geometry defines a generic triangle mesh. Define a mesh with an 3Tx3 array where T is the number of
triangles. Triangles must be specified with a counter clockwise winding. Here is the Standford bunny as an example:

[2]: # https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
verts = numpy.load('bunny.npy')

16.1 Geometric properties

Pass the vertices to the mesh geometry.

[3]: scene1 = fresnel.Scene()
bunny = fresnel.geometry.Mesh(scene1,vertices=verts,N=1)

[4]: bunny.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
→˓ roughness=0.6)
scene1.camera = fresnel.camera.Orthographic.fit(scene1,margin=0)
scene1.lights = fresnel.light.cloudy()
fresnel.pathtrace(scene1, samples=200)

91

https://graphics.stanford.edu/data/3Dscanrep/

Fresnel Documentation, Release 0.13.1

[4]:

Specify position and orientation to instantiate the mesh many times.

[5]: scene2 = fresnel.Scene()
bunnies = fresnel.geometry.Mesh(scene2,vertices=verts,N=2)
bunnies.position[:] = [[0,0,0], [-0.11,0,0.1]]
bunnies.orientation[:] = [[1,0,0,0], [0,0,1,0]]

[6]: bunnies.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.
→˓9]), roughness=0.6)
scene2.camera = fresnel.camera.Orthographic.fit(scene1,margin=0)
scene2.lights = fresnel.light.cloudy()
fresnel.pathtrace(scene2, samples=200)

92 Chapter 16. Mesh

Fresnel Documentation, Release 0.13.1

[6]:

16.2 Color

Specify per vertex colors. These colors are smoothly interpolated across the triangles. Set
primitive_color_mix=1 to choose the per-vertex colors.

Color the bunny based on the y-coordinate of the mesh:

[7]: mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=-0.08,
→˓vmax=0.05, clip=True),

cmap = matplotlib.cm.get_cmap(name='viridis'))

bunny.color[:] = fresnel.color.linear(mapper.to_rgba(verts[:,1]))
bunny.material.primitive_color_mix = 1.0

[8]: fresnel.pathtrace(scene1, samples=200)

16.2. Color 93

Fresnel Documentation, Release 0.13.1

[8]:

Here is a single triangle demo to demonstrate the interpolation:

[9]: scene3 = fresnel.Scene()
triangle = fresnel.geometry.Mesh(scene3,vertices=[[0,0,0],[1,0,0],[0,1,0]],N=1)
triangle.material.solid = 1
triangle.material.primitive_color_mix = 1.0
triangle.color[:] = [[1,0,0], [0,1,0], [0,0,1]]

[10]: scene3.camera = fresnel.camera.Orthographic.fit(scene3, view='front')
fresnel.preview(scene3)

94 Chapter 16. Mesh

Fresnel Documentation, Release 0.13.1

[10]:

16.3 Outlines

Outlines are placed on the outer edge of each triangle in the mesh.

[11]: triangle.outline_width=0.01
fresnel.preview(scene3)

16.3. Outlines 95

Fresnel Documentation, Release 0.13.1

[11]:

[12]: bunny.outline_width=0.0002
scene1.camera.height *= 0.5
fresnel.pathtrace(scene1, samples=200)

[12]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-

96 Chapter 16. Mesh

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

examples repository.

16.3. Outlines 97

https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

98 Chapter 16. Mesh

CHAPTER

SEVENTEEN

POLYGON

[1]: import fresnel
scene = fresnel.Scene()

The polygon geometry defines a set of N simple polygons in two dimensions. All polygons in the geometry have the
same vertices. Each polygon has a separate position, orientation angle, and color.

[2]: geometry = fresnel.geometry.Polygon(scene,
N=2,
vertices = [[0, -1], [1, 1],

[0, 0.5], [-1, 1]])
geometry.material.color = fresnel.color.linear([0.20,0.64,0.58])
geometry.material.solid=1

17.1 Geometric properties

position defines the position of each polygon in the z=0 plane.

[3]: geometry.position[:] = [[-1,0],
[1, 0]]

angle defines the rotation angle of each polygon

[4]: geometry.angle[:] = [0.1, -1.0]

[5]: scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

99

Fresnel Documentation, Release 0.13.1

[5]:

17.2 Color

color sets the color of each polygon (when primitive_color_mix > 0).

[6]: geometry.color[:] = [fresnel.color.linear([0.02,0.23,0.42]),
fresnel.color.linear([0.38,0.84,0.98])];

geometry.material.primitive_color_mix = 1.0

[7]: fresnel.preview(scene)

100 Chapter 17. Polygon

Fresnel Documentation, Release 0.13.1

[7]:

17.3 Outlines

Outlines are applied inside the outer edge of the polygon in the z=0 plane.

[8]: geometry.outline_width = 0.05

[9]: fresnel.preview(scene)

17.3. Outlines 101

Fresnel Documentation, Release 0.13.1

[9]:

17.4 Rounded polygons

Specify rounding_radius to round the edges of the polygon.

[10]: scene2 = fresnel.Scene()
geometry2 = fresnel.geometry.Polygon(scene2,

rounding_radius=0.3,
N=1,
vertices = [[-1, -1], [1, -1],

[1, 1], [-1, 1]],
outline_width=0.1)

geometry2.material.color=fresnel.color.linear([0.56,0.03,0.28])
geometry2.material.solid=1
scene2.camera = fresnel.camera.Orthographic.fit(scene2)

[11]: fresnel.preview(scene2)

102 Chapter 17. Polygon

Fresnel Documentation, Release 0.13.1

[11]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

17.4. Rounded polygons 103

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

104 Chapter 17. Polygon

CHAPTER

EIGHTEEN

BOX

[1]: import sys

import fresnel

scene = fresnel.Scene()

The Box geometry is a convenience class that uses the Cylinder geometry to draw a box. The Box geometry supports
triclinic boxes and follows hoomd-blue box conventions. For cubic boxes, only one length is needed.

[2]: my_box = [5]

[3]: geometry = fresnel.geometry.Box(scene, my_box)

[4]: scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

[4]:

Orthorhombic boxes require an Lx, Ly, and Lz

105

https://hoomd-blue.readthedocs.io/en/stable/box.html

Fresnel Documentation, Release 0.13.1

[5]: my_box = [5,6,7]
scene = fresnel.Scene()
geometry = fresnel.geometry.Box(scene, my_box)
scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

[5]:

Triclinic boxes are supported by using 6 terms, Lx, Ly, Lz, xy, xz, yz.

[6]: my_box = [5,6,7, .2, 0, .9]
scene = fresnel.Scene()
geometry = fresnel.geometry.Box(scene, my_box)
scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

106 Chapter 18. Box

Fresnel Documentation, Release 0.13.1

[6]:

The radius defaults to 0.5 but can be specifed when the box is created

[7]: my_box = [5,6,7, .2, 0, .9]
scene = fresnel.Scene()
geometry = fresnel.geometry.Box(scene, my_box, box_radius=.1)
scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

107

Fresnel Documentation, Release 0.13.1

[7]:

Or changed later

[8]: geometry.box_radius = 1
scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

[8]:

108 Chapter 18. Box

Fresnel Documentation, Release 0.13.1

The box color can also be set on initialization.

[9]: my_box = [5, 6, 7, 0.2, 0, 0.9]
scene = fresnel.Scene()
geometry = fresnel.geometry.Box(scene, my_box, box_color=[214 / 255, 67 / 255, 9 /
→˓255])
scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene)

[9]:

Or changed later.

[10]: geometry.box_color = [0, 51 / 255, 160 / 255]
fresnel.preview(scene)

109

Fresnel Documentation, Release 0.13.1

[10]:

The box size and shape can also be updated.

[11]: geometry.box = [4, 4, 5, 0.6, 0,0]
fresnel.preview(scene)

[11]:

110 Chapter 18. Box

CHAPTER

NINETEEN

MULTIPLE GEOMETRIES

A Scene may consist of more than one geometry object. For fast performance, try to condense the scene down to as
few geometries with as many primitives as possible. Multiple geometries allow for different materials to be applied to
the same type of geometry and for different types of geometry in the same scene.

[1]: import fresnel
scene = fresnel.Scene()

19.1 Create multiple geometries

To create multiple geometries, instantiate several instances of the geometry class.

[2]: geom1 = fresnel.geometry.Sphere(scene, position = [[-3.2, 1, 0], [-3.2, -1, 0], [-1.2,
→˓ 1, 0], [-1.2, -1, 0]], radius=1.0)
geom1.material = fresnel.material.Material(solid=1.0, color=fresnel.color.linear([0.
→˓42,0.267,1]))
geom1.outline_width = 0.12

[3]: geom2 = fresnel.geometry.Sphere(scene, position = [[3.2, 1, 0], [3.2, -1, 0], [1.2, 1,
→˓ 0], [1.2, -1, 0]], radius=1.0)
geom2.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.
→˓874,0.169]))

[4]: scene.camera = fresnel.camera.Orthographic.fit(scene)
fresnel.preview(scene, w=900, h=370)

111

Fresnel Documentation, Release 0.13.1

[4]:

19.2 Disable geometries

disable a geometry to prevent it from appearing in the scene.

[5]: geom1.disable()

[6]: fresnel.preview(scene, w=900, h=370)

[6]:

enable the geometry to make it appear again.

[7]: geom1.enable()

[8]: fresnel.preview(scene, w=900, h=370)

112 Chapter 19. Multiple geometries

Fresnel Documentation, Release 0.13.1

[8]:

19.3 Remove geometry

Call remove to completely remove a geometry instance from the scene. It cannot be added back.

[9]: geom2.remove()

[10]: fresnel.preview(scene, w=900, h=370)

[10]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

19.3. Remove geometry 113

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

Fresnel Documentation, Release 0.13.1

114 Chapter 19. Multiple geometries

CHAPTER

TWENTY

DEVICES

Each Scene is attached to a specific Device. The Device controls what hardware the ray tracing executes on. Scene
implicitly creates a default Device when you do not specify one.

20.1 The default device

The default device automatically selects GPU ray tracing if the gpu module is compiled and there is at least one gpu
present in the system - otherwise it selects CPU ray tracing.

[1]: import fresnel
device = fresnel.Device()

20.2 Query available execution modes

The available_modes static variable lists which execution modes are available. This will vary based on compile
time options and whether there is a GPU present in the system.

[2]: print(fresnel.Device.available_modes)

['gpu', 'cpu', 'auto']

available_gpus lists the GPUs available for rendering in the system.

[3]: for g in fresnel.Device.available_gpus:
print(g)

[0]: Quadro RTX 5000 48 SM_7.5 @ 1.82 GHz, 8198 MiB DRAM

20.3 Choose execution hardware

Explicitly manage a Device to control what hardware the ray tracing executes on. Converting the device to a string
provides a short summary of the device configuration.

[4]: gpu = fresnel.Device(mode='gpu')
print(gpu)

<fresnel.Device: Enabled OptiX devices:
[0]: Quadro RTX 5000 48 SM_7.5 @ 1.82 GHz, 8198 MiB DRAM

>

115

Fresnel Documentation, Release 0.13.1

[5]: cpu = fresnel.Device(mode='cpu')
print(cpu)

<fresnel.Device: All available CPU threads>

Set n to specify how many CPU threads or GPUs to use in parallel. By default, a device will use all available CPU
cores or GPUs in the system.

[6]: cpu_limit = fresnel.Device(mode='cpu', n=6)
print(cpu_limit)

<fresnel.Device: 6 CPU threads>

20.4 Attach a scene to a device

Each Scene must be attached to a device when created.

[7]: scene_gpu = fresnel.Scene(device=gpu)

[8]: scene_cpu = fresnel.Scene(device=cpu)

These two scenes have the same API, but different implementations.

[9]: for scene in [scene_cpu, scene_gpu]:
geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)
geometry.position[:] = [[1,1,1],

[1,1,-1],
[1,-1,1],
[1,-1,-1],
[-1,1,1],
[-1,1,-1],
[-1,-1,1],
[-1,-1,-1]]

geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.
→˓5,1]))

scene.camera = fresnel.camera.Orthographic.fit(scene)

Rendered output is essentially identical from the two devices.

[10]: fresnel.preview(scene_gpu, w=300, h=300)

116 Chapter 20. Devices

Fresnel Documentation, Release 0.13.1

[10]:

[11]: fresnel.preview(scene_cpu, w=300, h=300)

[11]:

20.5 Memory consumption

Each Device consumes memory by itself. When maintaining multiple scenes, attach them all to the same device to
reduce memory consumption.

[12]: import math
scene2_gpu = fresnel.Scene(device=gpu)
position = []
for k in range(5):

for i in range(5):
(continues on next page)

20.5. Memory consumption 117

Fresnel Documentation, Release 0.13.1

(continued from previous page)

for j in range(5):
position.append([2*i, 2*j, 2*k])

geometry = fresnel.geometry.Sphere(scene2_gpu, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0)
scene2_gpu.camera = fresnel.camera.Orthographic.fit(scene2_gpu)

[13]: fresnel.preview(scene2_gpu, w=300, h=300)

[13]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

118 Chapter 20. Devices

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

TWENTYONE

TRACER METHODS

Most of the tutorials use fresnel.preview() and fresnel.pathtrace() to render output images. This is a convenience
API, and there are cases where it is not appropriate. To render many frames, such as in a movie or interactive visual-
ization, use a Tracer directly to avoid overhead.

[1]: import fresnel
import math
from matplotlib import pyplot
%matplotlib inline
device = fresnel.Device()
scene = fresnel.Scene(device=device)
position = []
for i in range(6):

position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.
→˓linear([1,0.874,0.169])*0.9)
geometry.outline_width = 0.12
scene.camera = fresnel.camera.Orthographic.fit(scene, view='front', margin=0.2)

21.1 Common Tracer operations

The Tracer must use the same device as the Scenes it renders. Each Tracer maintains an output image, and the width
w and height h must be defined when the tracer is created.

[2]: tracer = fresnel.tracer.Preview(device=device, w=300, h=300)

21.1.1 Rendering and accessing output images

The render method renders the output.

[3]: out = tracer.render(scene)

The return value of render is a proxy reference to the internal image buffer of the Tracer. You can access with a
numpy array like interface.

[4]: out[100,100]

[4]: array([139, 121, 21, 255], dtype=uint8)

119

Fresnel Documentation, Release 0.13.1

The output object also provides an interface for jupyter to display the image.

[5]: out

[5]:

tracer.output also accesses the output buffer.

[6]: tracer.output

[6]:

The tracer can render a modified scene without the initialization overhead.

[7]: scene.camera.up = (1,0,0)
tracer.render(scene);

After rendering, existing references to the output buffer will access the newly rendered image.

120 Chapter 21. Tracer methods

Fresnel Documentation, Release 0.13.1

[8]: out

[8]:

21.1.2 Evaluate image exposure

Tracer provides several methods to evaluate image exposure. Enable highlight warnings to flag overexposed pixels in
the output image.

[9]: tracer.enable_highlight_warning()

The test image is exposed correctly, there are no warning pixels.

[10]: tracer.render(scene)

[10]:

Make the main light brighter to show the highlight warnings.

21.1. Common Tracer operations 121

Fresnel Documentation, Release 0.13.1

[11]: scene.lights[0].color = (1.2, 1.2, 1.2)
tracer.render(scene)

[11]:

Tracer can also compute the image histogram to evaluate image exposure.

[12]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');
pyplot.axis(ymax=400, ymin=0)

[12]: (-0.04794921875, 1.04990234375, 0.0, 400.0)

[13]: tracer.disable_highlight_warning()

122 Chapter 21. Tracer methods

Fresnel Documentation, Release 0.13.1

21.1.3 Resizing the output buffer

Call resize to set a new size for the output. When the image is resized, any existing rendered output is lost.

[14]: tracer.resize(w=150, h=150)

[15]: tracer.output

[15]:

The next call to render will render into the new output size.

[16]: tracer.render(scene)

[16]:

21.2 The Preview tracer

The Preview tracer renders output images quickly with approximate lighting effects.

[17]: tracer = fresnel.tracer.Preview(device=device, w=300, h=300)

A different random number seed will result in different jittered anti-aliasing samples.

[18]: tracer.seed = 12

[19]: tracer.render(scene)

21.2. The Preview tracer 123

Fresnel Documentation, Release 0.13.1

[19]:

Here is a different scene rendered with the Preview tracer:

[20]: position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
scene = fresnel.Scene(device)
scene.lights[1].theta = math.pi

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.1,0.1,0.
→˓4]),

roughness=0.1,
specular=1.0)

scene.camera = fresnel.camera.Orthographic.fit(scene)

[21]: tracer.resize(w=450, h=450)
tracer.aa_level = 3
tracer.render(scene)

124 Chapter 21. Tracer methods

Fresnel Documentation, Release 0.13.1

[21]:

21.3 The Path tracer

The Path tracer supports soft lighting, reflections, and other lighting effects.

Here is the same scene with the path tracer:

[22]: path_tracer = fresnel.tracer.Path(device=device, w=450, h=450)

[23]: path_tracer.sample(scene, samples=64, light_samples=40)

21.3. The Path tracer 125

Fresnel Documentation, Release 0.13.1

[23]:

The Path tracer performs many independent samples and averages them together. reset() starts averaging a new image.

[24]: path_tracer.reset()

render() accumulates a single sample into the resulting image.

[25]: path_tracer.render(scene)

126 Chapter 21. Tracer methods

Fresnel Documentation, Release 0.13.1

[25]:

The resulting image is noisy, average many samples together to obtain a clean image.

[26]: for i in range(64):
path_tracer.render(scene)

path_tracer.output

21.3. The Path tracer 127

Fresnel Documentation, Release 0.13.1

[26]:

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

[1]: import fresnel
import math

128 Chapter 21. Tracer methods

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

TWENTYTWO

INTERACTIVE SCENE VIEW

fresnel provides a Qt widget to interactively display scenes rendered with the path tracer. This is implemented with
the PySide2 library. Using jupyter support for this library, you can open an interactive window outside if the browser
and interact with it from the jupyter notebook.

First, initialize jupyter’s pyside2 integration.

[2]: from PySide2 import QtCore
%gui qt

Then, import fresnel.interact. This must be done after %gui qt.

[]: import fresnel.interact

Build a scene

[]: position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
scene = fresnel.Scene()
scene.lights[1].theta = math.pi

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.1,0.1,0.
→˓8]),

roughness=0.1,
specular=1.0)

scene.camera = fresnel.camera.Orthographic.fit(scene)

22.1 SceneView widget

Create a interact.SceneView widget to visualize the scene.

[]: view = fresnel.interact.SceneView(scene)

When the SceneView is the result of a cell, the windows shows and gets focus. In JupyterLab environments, you may
need to use view.show()

[]: view

use view.show() if in JupyterLab

129

https://wiki.qt.io/PySide2

Fresnel Documentation, Release 0.13.1

In the new window, you can click and drag to rotate the camera. Jupyter is still running so you can query changes to
the window here. For example, after rotating the camera, inspect the new camera configuration:

[]: repr(scene.camera)

After you change scene properties, call setScene to re-render the scene with the changes. For example: change the
material color.

[]: geometry.material.color = fresnel.color.linear([0.8,0.1,0.1])
view.setScene(scene)

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

130 Chapter 22. Interactive scene view

https://jupyter.org/
https://github.com/glotzerlab/fresnel-examples
https://github.com/glotzerlab/fresnel-examples

CHAPTER

TWENTYTHREE

RENDERING IMAGES IN MATPLOTLIB

Images rendered by fresnel can be converted to RGBA arrays for display with the imshow command in matplotlib.
This example shows how to build subplots that display the geometries of the Platonic Solids.

[1]: import numpy as np
import fresnel
import matplotlib
import matplotlib.pyplot as plt

[2]: platonic_solid_vertices = {
'Tetrahedron': [

[0.0, 0.0, 0.612372],
[-0.288675, -0.5, -0.204124],
[-0.288675, 0.5, -0.204124],
[0.57735, 0.0, -0.204124]],

'Cube': [
[-0.5, -0.5, -0.5],
[-0.5, -0.5, 0.5],
[-0.5, 0.5, -0.5],
[-0.5, 0.5, 0.5],
[0.5, -0.5, -0.5],
[0.5, -0.5, 0.5],
[0.5, 0.5, -0.5],
[0.5, 0.5, 0.5]],

'Octahedron': [
[-0.707107, 0.0, 0.0],
[0.0, 0.707107, 0.0],
[0.0, 0.0, -0.707107],
[0.0, 0.0, 0.707107],
[0.0, -0.707107, 0.0],
[0.707107, 0.0, 0.0]],

'Dodecahedron': [
[-1.37638, 0.0, 0.262866],
[1.37638, 0.0, -0.262866],
[-0.425325, -1.30902, 0.262866],
[-0.425325, 1.30902, 0.262866],
[1.11352, -0.809017, 0.262866],
[1.11352, 0.809017, 0.262866],
[-0.262866, -0.809017, 1.11352],
[-0.262866, 0.809017, 1.11352],
[-0.688191, -0.5, -1.11352],
[-0.688191, 0.5, -1.11352],
[0.688191, -0.5, 1.11352],
[0.688191, 0.5, 1.11352],

(continues on next page)

131

Fresnel Documentation, Release 0.13.1

(continued from previous page)

[0.850651, 0.0, -1.11352],
[-1.11352, -0.809017, -0.262866],
[-1.11352, 0.809017, -0.262866],
[-0.850651, 0.0, 1.11352],
[0.262866, -0.809017, -1.11352],
[0.262866, 0.809017, -1.11352],
[0.425325, -1.30902, -0.262866],
[0.425325, 1.30902, -0.262866]],

'Icosahedron': [
[0.0, 0.0, -0.951057],
[0.0, 0.0, 0.951057],
[-0.850651, 0.0, -0.425325],
[0.850651, 0.0, 0.425325],
[0.688191, -0.5, -0.425325],
[0.688191, 0.5, -0.425325],
[-0.688191, -0.5, 0.425325],
[-0.688191, 0.5, 0.425325],
[-0.262866, -0.809017, -0.425325],
[-0.262866, 0.809017, -0.425325],
[0.262866, -0.809017, 0.425325],
[0.262866, 0.809017, 0.425325]],

}

The render function returns a NumPy array of the output buffer, which can be passed directly to imshow.

[3]: def render(shape, color_id=0):
verts = platonic_solid_vertices[shape]
scene = fresnel.Scene(fresnel.Device(mode='cpu'))
scene.lights = fresnel.light.lightbox()
poly_info = fresnel.util.convex_polyhedron_from_vertices(verts)
cmap = matplotlib.cm.get_cmap('tab10')
geometry = fresnel.geometry.ConvexPolyhedron(

scene, poly_info,
position = [0, 0, 0],
orientation = [0.975528, 0.154508, -0.154508, -0.024472],
outline_width = 0.015)

geometry.material = fresnel.material.Material(
color = fresnel.color.linear(cmap(color_id)[:3]),
roughness = 0.1,
specular = 1)

geometry.outline_material = fresnel.material.Material(
color = (0., 0., 0.),
roughness = 0.1,
metal = 1.0)

scene.camera = fresnel.camera.Orthographic.fit(scene, view='front')
out = fresnel.pathtrace(scene, samples=64,

light_samples=32,
w=200, h=200)

return out[:]

Below, imshow is used to render one scene in each subplot. Specifying an interpolation with imshow improves image
quality.

[4]: def show_shape(shape, location, color_id):
ax = axs[location]

(continues on next page)

132 Chapter 23. Rendering images in matplotlib

Fresnel Documentation, Release 0.13.1

(continued from previous page)

ax.imshow(render(shape, color_id), interpolation='lanczos')
ax.set_xlabel(shape, fontsize=22)

fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(10, 8))

show_shape('Tetrahedron', (0, 0), 0)
show_shape('Cube', (0, 1), 1)
show_shape('Octahedron', (0, 2), 2)
show_shape('Dodecahedron', (1, 0), 3)
show_shape('Icosahedron', (1, 1), 4)

for ax in axs.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)

fig.suptitle('The Platonic Solids', y=0.92, fontsize=32)
plt.show()

133

Fresnel Documentation, Release 0.13.1

134 Chapter 23. Rendering images in matplotlib

CHAPTER

TWENTYFOUR

VISUALIZING GSD FILE

In this example, we will use fresnel to visualize a gsd file. We will color the particles & bonds by types, as well as
visualize the simulation box.

We will need the gsd package to run this example.

[]: import fresnel
import gsd.hoomd
import numpy as np

First we read in the .gsd file.

[]: with gsd.hoomd.open(name="molecules.gsd", mode="rb") as gsd_file:
snap = gsd_file[0]

box = snap.configuration.box

We want to color by particle type. We will color A types red, B types blue, and C types green.

[3]: N = snap.particles.N
particle_types = snap.particles.typeid
colors = np.empty((N, 3))

Color by typeid
colors[particle_types == 0] = fresnel.color.linear([.95, 0, 0]) # A type
colors[particle_types == 1] = fresnel.color.linear([0, .95, 0]) # B type
colors[particle_types == 2] = fresnel.color.linear([0, 0, .95]) # C type

[4]: scene = fresnel.Scene()

Spheres for every particle in the system
geometry = fresnel.geometry.Sphere(scene, N=N, radius=0.2)
geometry.position[:] = snap.particles.position
geometry.material = fresnel.material.Material(roughness=0.9)
geometry.outline_width = 0.05

use color instead of material.color
geometry.material.primitive_color_mix = 1.0
geometry.color[:] = fresnel.color.linear(colors)

[5]: # create box in fresnel
fresnel.geometry.Box(scene, box, box_radius=.07)

135

https://gsd.readthedocs.io/en/stable/

Fresnel Documentation, Release 0.13.1

[5]: <fresnel.geometry.Box at 0x7f5fbcb92670>

We will visualize bonds using cylinders, and color the bonds to match the particle types. To aid visualization, we will
first remove any bonds that span the periodic boundary.

[6]: all_bonds = np.stack(
[

snap.particles.position[snap.bonds.group[:, 0]],
snap.particles.position[snap.bonds.group[:, 1]],

],
axis=1,

)

Use a distance cutoff (L/2) to filter bonds that span the periodic boundary
bond_distances = np.linalg.norm(all_bonds[:,0,:]-all_bonds[:,1,:], axis=1)

This simple method will work for cubic cells
L = box[0]
bond_indices = np.where(bond_distances < L/2)[0]
filtered_bonds = all_bonds[bond_indices, :, :]

N_bonds = filtered_bonds.shape[0]
bonds = fresnel.geometry.Cylinder(scene, N=N_bonds)
bonds.material = fresnel.material.Material(roughness=0.5)
bonds.outline_width = 0.05

Color by bond typeid
bond_ids = snap.bonds.typeid[bond_indices]
bond_colors = np.empty((N_bonds, 3))
bond_colors[bond_ids == 0] = fresnel.color.linear([0, .95, 0]) # B-B Bonds
bond_colors[bond_ids == 1] = fresnel.color.linear([0, 0, .95]) # C-C Bonds

bonds.material.primitive_color_mix = 1.0
bonds.points[:] = filtered_bonds

bonds.color[:] = np.stack(
[fresnel.color.linear(bond_colors), fresnel.color.linear(bond_colors)], axis=1

)
bonds.radius[:] = [0.1] * N_bonds

Now that we have everything setup, we will render everything and apply some ring lighting conditions.

[7]: scene.camera = fresnel.camera.Orthographic.fit(scene)
scene.lights = fresnel.light.lightbox()
fresnel.pathtrace(scene, light_samples=5)

136 Chapter 24. Visualizing GSD File

Fresnel Documentation, Release 0.13.1

[7]:

137

Fresnel Documentation, Release 0.13.1

138 Chapter 24. Visualizing GSD File

CHAPTER

TWENTYFIVE

FRESNEL

Overview

Device Hardware device to use for ray tracing.
pathtrace Path trace a scene.
preview Preview a scene.
Scene Content of the scene to ray trace.

Details

The fresnel ray tracing package.

class fresnel.Device(mode='auto', n=None)
Hardware device to use for ray tracing.

Parameters

• mode (str) – Specify execution mode: Valid values are auto, gpu, and cpu.

• n (int) – Specify the number of cpu threads / GPUs this device will use. None will use all
available threads / devices.

Device defines hardware device to use for ray tracing. Scene and Tracer instances must be attached to a
Device. You may attach any number of scenes and tracers to a single Device.

See also:

Tutorials:

• Devices

• Tracer methods

When mode is auto, the default, Device will select GPU rendering if available and fall back on CPU render-
ing if not. Set mode to gpu or cpu to force a specific mode.

Important: By default (n==None), this device will use all available GPUs or CPU cores. Set n to the number
of GPUs or CPU cores this device should use. When selecting n GPUs, the device selects the first n in the
available_gpus list.

Tip: Use only a single Device to reduce memory consumption.

139

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.13.1

The static member available_modes lists which modes are available. For a mode to be available, the
corresponding module must be enabled at compile time. Additionally, there must be at least one GPU present
for the gpu mode to be available.

>>> fresnel.Device.available_modes
['gpu', 'cpu', 'auto']

available_gpus = []
Available GPUS.

Type list[str]

available_modes = []
Available execution modes.

Type list[str]

property mode
The active mode.

Type str

class fresnel.Scene(device=None, camera=None, lights=None)
Content of the scene to ray trace.

Parameters

• device (Device) – Device to use when rendering the scene.

• camera (camera.Camera) – Camera to view the scene. When None, defaults to:

camera.Orthographic(position=(0, 0, 100),
look_at=(0, 0, 0),
up=(0, 1, 0),
height=100)

• lights (list[Light]) – Lights to light the scene. When None, defaults to: light.
rembrandt()

Scene defines the contents of the scene to be traced, including any number of Geometry objects, the Camera,
the background_color, background_alpha, and lights.

Every Scene must be associated with a Device. For convenience, Scene creates a default Device when
device is None.

See also:

Tutorials:

• Introduction

• Scene properties

• Lighting setups

• Devices

property background_alpha
Background alpha (opacity) in the range [0,1].

Type float

property background_color
Background color linear RGB.

140 Chapter 25. fresnel

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

Note: Use fresnel.color.linear to convert standard sRGB colors into the linear color space used
by fresnel.

Type ((3,) numpy.ndarray of numpy.float32)

property camera
Camera view parameters.

Type camera.Camera

property device
Device this Scene is attached to.

Type Device

get_extents()
Get the extents of the scene.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of numpy.float32

property lights
Lights in the scene.

lights is a sequence of up to 4 directional lights that apply to the scene. Each light has a direction, color,
and size.

Type list[Light]

fresnel.pathtrace(scene, w=600, h=370, samples=64, light_samples=1)
Path trace a scene.

Parameters

• scene (Scene) – Scene to render.

• w (int) – Output image width (in pixels).

• h (int) – Output image height (in pixels).

• samples (int) – Number of times to sample the pixels of the scene.

• light_samples (int) – Number of light samples to take for each pixel sample.

pathtrace() is a shortcut that renders output with tracer.Path.

fresnel.preview(scene, w=600, h=370, anti_alias=True)
Preview a scene.

Parameters

• scene (Scene) – Scene to render.

• w (int) – Output image width (in pixels).

• h (int) – Output image height (in pixels).

• anti_alias (bool) – Whether to perform anti-aliasing.

preview() is a shortcut that renders output with tracer.Preview .

141

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Fresnel Documentation, Release 0.13.1

Modules

25.1 fresnel.camera

Overview

Camera Camera base class.
Orthographic Orthographic camera.
Perspective Perspective camera.

Details

Cameras.

class fresnel.camera.Camera(_camera)
Bases: object

Camera base class.

A Camera defines the view into the Scene.

Camera space is a coordinate system centered on the camera’s position. Positive x points to the right in the
image, positive y points up, and positive z points out of the screen. The visible area in the image plane is
centered on look_at with the given height. The visible width is height * aspect where aspect is the
aspect ratio determined by the resolution of the image in Tracer (aspect = tracer.w / tracer.h).
Camera space shares units with Scene space.

Camera provides common methods and properties for all camera implementations. Camera cannot be used
directly, use one of the subclasses.

See also:

• Orthographic

• Perspective

property basis
Orthonormal camera basis.

basis is computed from position, look_at, and up. The 3 vectors of the basis define the +x, +y,
and +z camera space directions in scene space.

Type ((3, 3) numpy.ndarray of numpy.float32)

property height
The height of the image plane.

Type float

property look_at
The point the camera looks at.

position - look_at defines the +z direction in camera space.

Type ((3,) numpy.ndarray of numpy.float32)

142 Chapter 25. fresnel

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

property position
Camera position.

Type ((3,) numpy.ndarray of numpy.float32)

property up
A vector pointing toward the +y direction in camera space.

The component of up perpendicular to look_at - position defines the +y direction in camera
space.

Type ((3,) numpy.ndarray of numpy.float32)

class fresnel.camera.Orthographic(position, look_at, up, height)
Bases: fresnel.camera.Camera

Orthographic camera.

Parameters

• position ((3,) numpy.ndarray of numpy.float32) – Camera position.

• look_at ((3,) numpy.ndarray of numpy.float32) – The point the camera looks
at (the center of the focal plane).

• up ((3,) numpy.ndarray of numpy.float32) – A vector pointing toward the +y
direction in camera space.

• height (float) – The height of the image plane.

An orthographic camera traces parallel rays from the image plane into the scene. Lines that are parallel in the
Scene will remain parallel in the rendered image.

position is the center of the image plane in Scene space. look_at is the point in Scene space that will
be in the center of the image. Together, these vectors define the image plane which is perpendicular to the line
from position to look_at.

up is a vector in Scene space that defines the (+y) direction in the camera space). up does not need to be
perpendicular to the line from position to look_at, but it must not be parallel to that line. height sets the
height of the image sensor in Scene units. The width is height * aspect where aspect is the aspect ratio
determined by the resolution of the image in Tracer (aspect = tracer.w / tracer.h).

Note: Only objects inside the rectangular cuboid defined by corners of the image sensor and the focal plane
(extended to infinite height) will appear in the image.

Objects in front of the image plane will appear in the rendered image, objects behind the plane will not.

Tip: Place the camera position outside the geometry of the Scene. Decrease height to zoom in and
increase height to zoom out.

classmethod fit(scene, view='auto', margin=0.05)
Fit a camera to a Scene.

Create an orthographic camera that fits the entire height of the scene in the image plane.

Parameters

• scene (Scene) – Fit the camera to this scene.

25.1. fresnel.camera 143

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

• view (str) – Select view

• margin (float) – Fraction of extra space to leave on the top and bottom of the scene.

view may be ‘auto’, ‘isometric’, or ‘front’.

The isometric view is an orthographic projection from a particular angle so that the x,y, and z directions
are equal lengths. The front view is an orthographic projection where +x points to the right, +y points up
and +z points out of the screen in the image plane. ‘auto’ automatically selects ‘isometric’ for 3D scenes
and ‘front’ for 2D scenes.

class fresnel.camera.Perspective(position, look_at, up, focal_length=0.5, focus_distance=10,
f_stop=inf, height=0.24)

Bases: fresnel.camera.Camera

Perspective camera.

Parameters

• position ((3,) numpy.ndarray of numpy.float32) – Camera position.

• look_at ((3,) numpy.ndarray of numpy.float32) – The point the camera looks
at (the center of the focal plane).

• up ((3,) numpy.ndarray of numpy.float32) – A vector pointing toward the +y
direction in camera space.

• focal_length (float) – Focal length of the camera lens.

• focus_distance (float) – Distance to the focal plane.

• f_stop (float) – F-stop ratio for the lens.

• height (float) – The height of the image plane.

A perspective camera traces diverging rays from the camera position through the image plane into the scene.
Lines that are parallel in the Scene will converge rendered image.

position is the center of projection Scene space. look_at is the point in Scene space that will be in
the center of the image. Together, these vectors define the image plane which is perpendicular to the line from
position to look_at.

up is a vector in Scene space that defines the (+y) direction in the camera space). up does not need to be
perpendicular to the line from position to look_at, but it must not be parallel to that line.

Note: Only objects inside the rectangular pyramid defined by the position and corners of the image sensor
(extended to infinite height) will appear in the image.

Perspective models an ideal camera system with a sensor and a thin lens. The sensor lies in the image
plane and is the location where the pixels in the rendered image will be captured. height sets the height of
the sensor in Scene units. The width is height * aspect where aspect is the aspect ratio determined by
the resolution of the image in Tracer (aspect = tracer.w / tracer.h). focal_length sets the
distance between position and the image plane.

Note: The camera height should be small relative to the objects in the Scene with those objects in front of
the image plane. If the scene units are decimeters, the default height of 0.24 is 24 mm, the height of a 35 mm
camera sensor.

144 Chapter 25. fresnel

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

Tip: There are two ways to zoom a perspective camera. 1) Move the position of the camera while keeping the
focal length fixed. Photographers call this “zooming with your feet” and it maintains a fixed field of view. 2)
Increase the focal_length to zoom in or decrease it to zoom out while keeping position fixed. This is the
the equivalent of rotating the focal length setting on a zoom lens. Changing focal_length changes the field
of view.

Like a digital camera, the Perspective camera must be focused. The focal plane is parallel to the image
plane at a distance focus_distance from the camera position. Objects on the focal plane will be in
sharp focus. Objects in front of and behind the plane will be out of focus. Out of focus areas in an image are
called bokeh and can be used to draw the viewer’s attention to the subject that is in clear focus. The space in
front of and behind the focal plane that appears to be in focus is the depth of field. Set f_stop to control the
amount of depth of field. Small, non-zero values will lead to very little depth of field and a value of inf will
extend the depth of field to infinity.

Note: There are convenience methods to set the camera parameters:

• focus_on takes a point and computes the focus_distance to put that point on the focal plane.

• depth_of_field computes the f_stop needed to achieve a given depth of field.

• vertical_field_of_view computes the focal_length needed to achieve a given field of view
angle.

Tip: The default height of 0.24 works well for scene objects that are size ~1 or larger. If the typical objects
in your scene are much smaller, adjust height by an appropriate fraction.

property depth_of_field
The distance about the focal plane in sharp focus.

The area of sharp focus extends in front and behind the focal plane. The distance between the front and
back areas of sharp focus is the depth of field.

The depth of field is a function of focus_distance, focal_length, f_stop, and height.

Setting depth_of_field computes f_stop to obtain the desired depth of field as a function of
focus_distance, focal_length, and height.

Note: depth_of_field does not remain fixed after setting it.

Type float

property f_stop
F-stop ratio for the lens.

Set the aperture of the opening into the lens in f-stops. This sets the range of the scene that is in sharp
focus. Smaller values of f_stop result in more background blur.

Tip: Use depth_of_field to set the range of sharp focus in Scene distance units.

Type float

25.1. fresnel.camera 145

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

property focal_length
Focal length of the camera lens.

The focal length relative to the image height sets the field of view. Given a fixed height, a larger
focal_length gives a narrower field of view.

Tip: With the default height of 0.24, typical focal lengths range from .18 (wide angle) to 0.5 (normal) to
6.0 (telephoto).

See also:

vertical_field_of_view

Type float

property focus_distance
Distance to the focal plane.

The focus distance is the distance from the camera position to the center of focal plane.

Tip: Use focus_on to compute the focus distance to a particular point in the Scene.

Type float

property focus_on
A point in the focal plane.

The area of sharp focus extends in front and behind the focal plane.

The focal plane is a function of focus_distance, position, and look_at.

Setting focus_on computes focus_distance so that the given point is on the focal plane.

Note: focus_on does not remain fixed after setting it.

Type (3,) numpy.ndarray of numpy.float32)

property vertical_field_of_view
Vertical field of view.

The vertical field of view is the angle (in radians) that the camera covers in the +y direction. It is a function
of focal_length and height.

Setting vertical_field_of_view computes focal_length to achieve the given field of view.

Note: vertical_field_of_view does not remain fixed after setting it.

Type float

146 Chapter 25. fresnel

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

25.2 fresnel.color

Overview

linear Convert a sRGB color (or colors) into the linear space.

Details

Color utilities.

fresnel.color.linear(color)
Convert a sRGB color (or colors) into the linear space.

Standard tools for working with sRGB colors provide gamma corrected values. fresnel needs to perform cal-
culations in a linear color space. This method converts from sRGB to the linear space. Use linear() when
specifying material or particle colors with sRGB inputs (such as you find in a color picker).

linear() accepts RGBA input (such as from matplotlib’s colors.to_rgba colormap method), but ignores the
alpha channel and outputs an Nx3 array.

Parameters color ((3,), (4,), (N, 3), or (N, 4) numpy.ndarray of numpy.float32) – RGB
or RGBA colors.

Color components are in the range [0,1].

Returns numpy.ndarray with the linearized color(s), same shape as color.

25.3 fresnel.geometry

Overview

Box Box geometry.
ConvexPolyhedron Convex polyhedron geometry.
Cylinder Cylinder geometry.
Geometry Geometry base class.
Mesh Mesh geometry.
Polygon Polygon geometry.
Sphere Sphere geometry.

Details

Geometric primitives.

Geometry defines objects that are visible in a Scene. The base class Geometry provides common operations and
properties. Instantiate specific geometry class to add objects to a Scene.

See also:

Tutorials:

• Primitive properties

• Material properties

25.3. fresnel.geometry 147

https://en.wikipedia.org/wiki/SRGB
https://en.wikipedia.org/wiki/RGBA_color_space
https://matplotlib.org/api/_as_gen/matplotlib.colors.to_rgba.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

• Outline materials

• Multiple geometries

class fresnel.geometry.Box(scene, box, box_radius=0.5, box_color=[0, 0, 0])
Bases: fresnel.geometry.Cylinder

Box geometry.

Generate a triclinic box outline with spherocylinders. The geometry’s material defaults to material.
Material(solid=1.0).

Parameters

• scene (Scene) – Add the geometry to this scene.

• box ((1,), (3,), or (6,) numpy.ndarray of float32) – Box parameters.

• box_radius (float) – Radius of box edges.

• box_color ((3,) numpy.ndarray of float32) – Color of the box edges.

Note: A 1-element box array expands to a cube. A 3-element box array [Lx, Ly, Lz] expands to an
orthorhobic cuboid, and a 6-element box array represents a fully triclinic box in the same format as GSD and
HOOMD: [Lx, Ly, Lz, xy, xz, yz].

See also:

Tutorials:

• Box

• Visualizing GSD File

Note: The Box class is constructed from spherocylinders, which can be modified individually. The
convenience attributes box_radius and box_color can be used to set the thickness and color of the entire
box.

property box
Box parameters.

Set box to update the shape of the box.

Type (1,), (3,), or (6,) numpy.ndarray of float32

property box_color
Color of the box edges.

Note: This property sets the color of the material.

Type (3,) numpy.ndarray of float32

property box_radius
Radius of box edges.

Type (float)

148 Chapter 25. fresnel

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

class fresnel.geometry.ConvexPolyhedron(scene, polyhedron_info, position=(0, 0, 0), ori-
entation=(1, 0, 0, 0), color=(0, 0, 0), N=None,
material=None, outline_material=None, out-
line_width=0.0)

Bases: fresnel.geometry.Geometry

Convex polyhedron geometry.

Define a set of convex polyhedron primitives with individual positions, orientations, and colors.

A convex polyhedron is defined by P outward facing planes (origin and normal vector) and a radius that encom-
pass the shape. Use convex_polyhedron_from_vertices to construct this from the convex hull of a
set of vertices.

Parameters

• scene (Scene) – Add the geometry to this scene.

• polyhedron_info (Dict) – A dictionary containing the face normals
(face_normal), origins (face_origin), face colors (face_color), and the
radius (radius)).

• position ((N, 3) numpy.ndarray of float32) – Position of each polyhedron in-
stance.

• orientation ((N, 4) numpy.ndarray of float32) – Orientation of each polyhedron
instance (as a quaternion).

• color ((N, 3) numpy.ndarray of float32) – Color of each polyhedron.

• N (int) – Number of spheres in the geometry. If None, determine N from position.

• material (material.Material) – Define how light interacts with the geometry.
When None, defaults to material.Material().

• outline_material (material.Material) – Define how light interacts with
the geometry’s outline. When None, defaults to solid black material.
Material(solid=1, color=(0,0,0)).

• outline_width (float) – Width of the outline in scene units.

See also:

Tutorials:

• Convex polyhedron

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate array type.

property color
The color of each polyhedron.

Type (N, 3) Array

property color_by_face
Mix face colors with the per-polyhedron color.

Set to 0 to color particles by the per-particle color. Set to 1 to color faces by the per-face color. Set to a
value between 0 and 1 to blend between the two colors.

Type float

25.3. fresnel.geometry 149

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

get_extents()
Get the extents of the geometry.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of float32

property orientation
The orientation of each polyhedron.

Type (N, 4) Array

property position
The position of each polyhedron.

Type (N, 3) Array

class fresnel.geometry.Cylinder(scene, points=((0, 0, 0), (0, 0, 0)), radius=0.5, color=(0,
0, 0), N=None, material=None, outline_material=None, out-
line_width=0.0)

Bases: fresnel.geometry.Geometry

Cylinder geometry.

Define a set of spherocylinder primitives with individual start and end positions, radii, and colors.

Parameters

• scene (Scene) – Add the geometry to this scene.

• points ((N, 2, 3) numpy.ndarray of float32) – N cylinder start and end points.

• radius ((N,) numpy.ndarray of float32) – Radius of each cylinder.

• color ((N, 2, 3) numpy.ndarray of float32) – Color of each start and end point.

• N (int) – Number of cylinders in the geometry. When None, determine N from points.

• material (material.Material) – Define how light interacts with the geometry.
When None, defaults to material.Material().

• outline_material (material.Material) – Define how light interacts with
the geometry’s outline. When None, defaults to solid black material.
Material(solid=1, color=(0,0,0)).

• outline_width (float) – Width of the outline in scene units.

See also:

Tutorials:

• Cylinder

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate array type.

Tip: When all cylinders are the same size or color, pass a single value and NumPy will broadcast it to all
elements of the array.

property color
Color of each start and end point.

Type (N, 2, 3) Array

150 Chapter 25. fresnel

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

get_extents()
Get the extents of the geometry.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of float32

property points
The start and end points of the cylinders.

Type (N, 2, 3) Array

property radius
The radii of the cylinders.

Type (N,) Array

class fresnel.geometry.Geometry
Bases: object

Geometry base class.

Geometry provides operations and properties common to all geometry classes.

Note: You cannot instantiate a Geometry directly. Use one of the subclasses.

disable()
Disable the geometry.

When disabled, the geometry will not visible in the Scene.

See also:

enable

enable()
Enable the geometry.

When enabled, the geometry will be visible in the Scene.

See also:

disable

property material
Define how light interacts with the geometry.

Type material.Material

property outline_material
Define how light interacts with the geometry’s outline.

Type material.Material

property outline_width
Width of the outline in scene units.

Type float

remove()
Remove the geometry from the scene.

After calling remove, the geometry is no longer part of the scene. It cannot be added back into the scene.
Use disable and enable hide geometry reversibly.

25.3. fresnel.geometry 151

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

class fresnel.geometry.Mesh(scene, vertices, position=(0, 0, 0), orientation=(1, 0, 0, 0),
color=(0, 0, 0), N=None, material=None, outline_material=None,
outline_width=0.0)

Bases: fresnel.geometry.Geometry

Mesh geometry.

Define a set of triangle mesh primitives with individual positions, orientations, and colors.

Parameters

• scene (Scene) – Add the geometry to this scene.

• vertices ((3T, 3) numpy.ndarray of float32) – Vertices of the triangles, listed
contiguously. Vertices 0,1,2 define the first triangle, 3,4,5 define the second, and so on.

• color ((3T, 3) numpy.ndarray of float32) – Color of each vertex.

• position ((N, 3) numpy.ndarray of float32) – Position of each mesh instance.

• orientation ((N, 4) numpy.ndarray of float32) – Orientation of each mesh in-
stance (as a quaternion).

• N (int) – Number of mesh instances in the geometry. If None, determine N from position.

• material (material.Material) – Define how light interacts with the geometry.
When None, defaults to material.Material().

• outline_material (material.Material) – Define how light interacts with
the geometry’s outline. When None, defaults to solid black material.
Material(solid=1, color=(0,0,0)).

• outline_width (float) – Width of the outline in scene units.

See also:

Tutorials:

• Mesh

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate array type.

property color
The color of each sphere.

Type (N, 3) Array

get_extents()
Get the extents of the geometry.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of float32

property orientation
The orientation of each mesh.

Type (N, 4) Array

property position
The position of each mesh.

Type (N, 3) Array

152 Chapter 25. fresnel

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

class fresnel.geometry.Polygon(scene, vertices, position=(0, 0), angle=0, color=(0, 0,
0), rounding_radius=0, N=None, material=None, out-
line_material=None, outline_width=0.0)

Bases: fresnel.geometry.Geometry

Polygon geometry.

Define a set of simple polygon primitives in the xy plane with individual positions, rotation angles, and colors.

Parameters

• scene (Scene) – Add the geometry to this scene.

• vertices ((N_vert, 2) numpy.ndarray of float32) – Polygon vertices.

• position ((N, 2) numpy.ndarray of float32) – Position of each polygon.

• angle ((N,) numpy.ndarray of float32) – Orientation angle of each polygon (in
radians).

• color ((N, 3) numpy.ndarray of float32) – Color of each polygon.

• rounding_radius (float) – Rounding radius for spheropolygons.

• N (int) – Number of polygons in the geometry. If None, determine N from position.

• material (material.Material) – Define how light interacts with the geometry.
When None, defaults to material.Material().

• outline_material (material.Material) – Define how light interacts with
the geometry’s outline. When None, defaults to solid black material.
Material(solid=1, color=(0,0,0)).

• outline_width (float) – Width of the outline in scene units.

See also:

Tutorials:

• Polygon

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate array type.

property angle
The rotation angle of each polygon (in radians).

Type (N,) Array

property color
The color of each polygon.

Type (N, 2, 3) Array

get_extents()
Get the extents of the geometry.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of float32

property position
The position of each polygon.

Type (N, 2) Array

25.3. fresnel.geometry 153

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

class fresnel.geometry.Sphere(scene, position=(0, 0, 0), radius=0.5, color=(0, 0, 0), N=None,
material=None, outline_material=None, outline_width=0.0)

Bases: fresnel.geometry.Geometry

Sphere geometry.

Define a set of sphere primitives with individual positions, radii, and colors.

Parameters

• scene (Scene) – Add the geometry to this scene.

• position ((N, 3) numpy.ndarray of float32) – Position of each sphere.

• radius ((N,) numpy.ndarray of float32) – Radius of each sphere.

• color ((N, 3) numpy.ndarray of float32) – Color of each sphere.

• N (int) – Number of spheres in the geometry. If None, determine N from position.

• material (material.Material) – Define how light interacts with the geometry.
When None, defaults to material.Material().

• outline_material (material.Material) – Define how light interacts with
the geometry’s outline. When None, defaults to solid black material.
Material(solid=1, color=(0,0,0)).

• outline_width (float) – Width of the outline in scene units.

See also:

Tutorials:

• Sphere

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate array type.

Tip: When all spheres are the same size, pass a single value for radius and numpy will broadcast it to all
elements of the array.

property color
The color of each sphere.

Type (N, 3) Array

get_extents()
Get the extents of the geometry.

Returns The lower left and upper right corners of the scene.

Return type (3,2) numpy.ndarray of float32

property position
The position of each sphere.

Type (N, 3) Array

property radius
The radius of each sphere.

Type (N,) Array

154 Chapter 25. fresnel

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

25.4 fresnel.interact

Overview

Details

25.5 fresnel.light

Overview

Light A light.
butterfly Create a butterfly lighting setup.
cloudy Create a cloudy day lighting setup.
lightbox Create a light box lighting setup.
loop Create a loop lighting setup.
rembrandt Create a Rembrandt lighting setup.
ring Create a ring lighting setup.

Details

Lights.

Light objects in a Scene.

See also:

Tutorials:

• Scene properties

• Lighting setups

class fresnel.light.Light(direction, color=(1, 1, 1), theta=0.375)
A light.

Parameters

• direction ((3,) numpy.ndarray of float32) – Vector direction the light points (in
Camera space).

• color ((3,) numpy.ndarray of float32) – Linear RGB color and intensity of the
light.

• theta (float) – Half angle of the cone that defines the area of the light (in radians).

In fresnel, lights are area lights at an infinite distance away in the given direction and are circular with the size
set by theta. color sets the light intensity. A (0.5, 0.5, 0.5) light is twice as bright as (0.25, 0.
25, 0.25). Lights are normalized so that color = (1, 1, 1) should provide approximately a correct
exposure. Color values greater than 1 are allowed.

Note: direction is in Camera space. A direction of (1, 0, 0) sets a light coming from the right in the image,

25.5. fresnel.light 155

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

regardless of the camera position.

fresnel.light.butterfly()
Create a butterfly lighting setup.

The butterfly portrait lighting setup is front lighting with the key light (index 0) placed high above the camera
and the fill light (index 1) below the camera.

Returns The lights.

Return type list[Light]

fresnel.light.cloudy()
Create a cloudy day lighting setup.

The cloudy lighting setup mimics a cloudy day. A strong light comes from all directions above. A weaker
light comes from all directions below (accounting for light reflected off the ground). Use Path tracing for best
results with this setup.

Returns The lights.

Return type list[Light]

fresnel.light.lightbox()
Create a light box lighting setup.

The light box lighting setup places a single area light that covers the top, bottom, left, and right. Use Path
tracing for best results with this setup.

Returns The lights.

Return type list[Light]

fresnel.light.loop(side='right')
Create a loop lighting setup.

The loop portrait lighting setup places the key light slightly to one side of the camera and slightly up (index 0).
The fill light is on the other side of the camera at the level of the camera (index 1).

Parameters side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

Returns The lights.

Return type list[Light]

fresnel.light.rembrandt(side='right')
Create a Rembrandt lighting setup.

The Rembrandt portrait lighting setup places the key light 45 degrees to one side of the camera and slightly up
(index 0). The fill light is on the other side of the camera at the level of the camera (index 1).

Parameters side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

Returns The lights.

Return type list[Light]

fresnel.light.ring()
Create a ring lighting setup.

The ring lighting setup provides a strong front area light. This type of lighting is common in fashion photogra-
phy. Use Path tracing for best results with this setup.

Returns The lights.

Return type list[Light]

156 Chapter 25. fresnel

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Fresnel Documentation, Release 0.13.1

25.6 fresnel.material

Overview

Material Define material properties.

Details

Materials describe the way light interacts with surfaces.

class fresnel.material.Material(solid=0, color=(0.9, 0.9, 0.9), primitive_color_mix=0, rough-
ness=0.3, specular=0.5, spec_trans=0, metal=0)

Define material properties.

Materials control how light interacts with the geometry.

Parameters

• solid (float) – Set to 1 to pass through a solid color, regardless of the light and view
angle.

• color ((3,) numpy.ndarray of float32)) – Linear material color.

• primitive_color_mix (float) – Set to 1 to use the color provided in the
Geometry , 0 to use the color specified in the Material, or a value in the range [0,
1] to mix the two colors.

• roughness (float) – Roughness of the material. Nominally in the range [0.1, 1].

• specular (float) – Control the strength of the specular highlights. Nominally in the
range [0, 1].

• spec_trans (float) – Control the amount of specular light transmission. In the range
[0, 1].

• metal (float) – Set to 0 for dielectric material, or 1 for metal. Intermediate values
interpolate between the two.

See also:

Tutorials:

• Material properties

Note: Colors are in the linearized color space. Use fresnel.color.linear to convert standard sRGB
colors into this space.

property color

• Linear material color.

Type ((3,) numpy.ndarray of float32))

property metal
Set to 0 for dielectric material, or 1 for metal.

Intermediate values interpolate between the two.

25.6. fresnel.material 157

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Fresnel Documentation, Release 0.13.1

Type float

property primitive_color_mix
Mix the material color with the geometry.

Set to 1 to use the color provided in the Geometry , 0 to use the color specified in the Material, or a
value in the range [0, 1] to mix the two colors.

Type float

property roughness
Roughness of the material.

Nominally in the range [0.1, 1].

Type float

property solid
Is this material a solid color?

Set to 1 to pass through a solid color, regardless of the light and view angle.

Type float

property spec_trans
Control the amount of specular light transmission.

In the range [0, 1].

Type float

property specular
Control the strength of the specular highlights.

Nominally in the range [0, 1].

Type float

25.7 fresnel.tracer

Overview

Path Path tracer.
Preview Preview ray tracer.
Tracer Base class for all ray tracers.

Details

Ray tracers process a Scene and render output images.

• Preview generates a quick approximate render.

• Path which provides soft shadows, reflections, and other effects.

See also:

Tutorials:

• Introduction

• Tracer methods

158 Chapter 25. fresnel

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.13.1

class fresnel.tracer.Path(device, w, h)
Bases: fresnel.tracer.Tracer

Path tracer.

Parameters

• device (Device) – Device to use.

• w (int) – Output image width.

• h (int) – Output image height.

The path tracer applies advanced lighting effects, including soft shadows, reflections, and depth of field. It
operates by Monte Carlo sampling. Each call to render performs one sample per pixel. The output image
is the mean of all the samples. Many samples are required to produce a smooth image. sample provides a
convenience API to make many samples with a single call.

reset()
Clear the output buffer.

Start sampling a new image. Increment the random number seed so that the new image is statistically
independent from the previous.

sample(scene, samples, reset=True, light_samples=1)
Sample the image.

Parameters

• scene (Scene) – The scene to render.

• samples (int) – The number of samples to take per pixel.

• reset (bool) – When True, call reset before sampling

• light_samples (int) – The number of light samples per primary camera ray.

As an unbiased renderer, the sampling noise will scale as 1√

Returns
A reference to the current output buffer.

Return type
ImageArray

Note: When reset is False, subsequent calls to sample will continue to add samples to the current output
image. Use the same number of light samples when sampling an image in this way.

class fresnel.tracer.Preview(device, w, h, anti_alias=True)
Bases: fresnel.tracer.Tracer

Preview ray tracer.

Parameters

• device (Device) – Device to use.

• w (int) – Output image width.

• h (int) – Output image height.

• anti_alias (bool) – Whether to perform anti-aliasing. If True, uses an 64 samples.

25.7. fresnel.tracer 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Fresnel Documentation, Release 0.13.1

Overview

The Preview tracer produces a preview of the scene quickly. It approximates the effect of light on materials.
The output of the Preview tracer will look very similar to that from the Path tracer, but will miss soft
shadows, reflection, transmittance, depth of field and other effects.

Anti-aliasing

The default value of anti_alias is True to smooth sharp edges in the image. The anti-aliasing level corre-
sponds to aa_level=3 in fresnel versions up to 0.11.0. Different seed values will result in different output
images.

property anti_alias
Whether to perform anti-aliasing.

Type bool

class fresnel.tracer.Tracer
Bases: object

Base class for all ray tracers.

Tracer provides operations common to all ray tracer classes.

Each Tracer instance stores a pixel output buffer. When you render a Scene, the output is updated.

Note: You cannot instantiate Tracer directly. Use one of the subclasses.

disable_highlight_warning()
Disable the highlight clipping warnings.

enable_highlight_warning(color=(1, 0, 1))
Enable highlight clipping warnings.

When a pixel in the rendered image is too bright to represent, make that pixel the given color to flag the
problem to the user.

Parameters color (tuple) – Color to make the highlight warnings.

histogram()
Compute a histogram of the image.

The histogram is computed as a lightness in the sRGB color space. The histogram is computed only over
the visible pixels in the image, fully transparent pixels are ignored. The returned histogram is nbins x 4,
the first column contains the lightness histogram and the next 3 contain R,B, and G channel histograms
respectively.

Returns (histogram, bin_positions).

property linear_output
Reference to the current output buffer in linear color space.

Note: The output buffer is modified by render and resize.

Type Array

160 Chapter 25. fresnel

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple

Fresnel Documentation, Release 0.13.1

property output
Reference to the current output buffer.

Note: The output buffer is modified by render and resize.

Type ImageArray

render(scene)
Render a scene.

Parameters scene (Scene) – The scene to render.

Returns A reference to the current output buffer as a fresnel.util.ImageArray .

Render the given scene and write the resulting pixels into the output buffer.

resize(w, h)
Resize the output buffer.

Parameters

• w (int) – New output buffer width.

• h (int) – New output buffer height.

Warning: resize clears the output buffer.

property seed
Random number seed.

Type int

25.8 fresnel.util

Overview

Array Access fresnel memory buffers.
convex_polyhedron_from_vertices Make a convex polyhedron from vertices.
ImageArray Access fresnel images.

Details

Utilities.

class fresnel.util.Array(buf, geom)
Bases: object

Access fresnel memory buffers.

Array provides a python interface to access the internal data of memory buffers stored and managed by fresnel.
You can access a Array as if it were a numpy.ndarray (with limited operations). Below, slice is a slice or
array indexing mechanic that numpy understands.

25.8. fresnel.util 161

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/glossary.html#term-slice

Fresnel Documentation, Release 0.13.1

Writing

Write to an array with array[slice] = v where v is numpy.ndarray, list, or scalar value to broad-
cast. When v is a contiguous numpy.ndarray of the same data type, the data is copied directly from v into
the internal buffer. Otherwise, it is converted to a numpy.ndarray before copying.

Reading

Read from an array with v = array[slice]. This returns a copy of the data as a numpy.ndarray each
time it is called.

shape
Dimensions of the array.

Type tuple[int, [int]]

dtype
Numpy data type

class fresnel.util.ImageArray(buf, geom)
Bases: fresnel.util.Array

Access fresnel images.

Provide Array functionality withsome additional convenience methods specific to working with images. Im-
ages are represented as (W, H, 4) numpy.ndarray of uint8 values in RGBA format.

When a ImageArray is the result of an image in a Jupyter notebook cell, Jupyter will display the image.

fresnel.util.convex_polyhedron_from_vertices(vertices)
Make a convex polyhedron from vertices.

Parameters vertices ((3,) numpy.ndarray of float32) – Vertices of the polyhedron.

Returns

Convex hull of vertices in a format used by ConvexPolyhedron.

The dictionary contains the keys face_origin, face_normal, face_color, and
radius.

Return type dict

The dictionary can be used directly to draw a polyhedron from its vertices:

scene = fresnel.Scene()
polyhedron = fresnel.util.convex_polyhedron_from_vertices(vertices)
geometry = fresnel.geometry.ConvexPolyhedron(scene,

polyhedron,
position=[0, 0, 0],
orientation=[1, 0, 0, 0])

162 Chapter 25. fresnel

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict

Fresnel Documentation, Release 0.13.1

25.9 fresnel.version

Version and build information.

fresnel.version.version
fresnel package version, following semantic versioning.

Type str

25.9. fresnel.version 163

https://docs.python.org/3/library/stdtypes.html#str

Fresnel Documentation, Release 0.13.1

164 Chapter 25. fresnel

CHAPTER

TWENTYSIX

CODE STYLE

All code in fresnel must follow a consistent style to ensure readability. We provide configuration files for linters
(specified below) so that developers can automatically validate and format files.

26.1 Python

Python code in GSD should follow PEP8 with the formatting performed by yapf (configuration in setup.cfg).
Code should pass all flake8 tests and formatted by yapf.

26.1.1 Tools

• Linter: flake8

– With these plugins:

* pep8-naming

* flake8-docstrings

* flake8-rst-docstrings

– Run: flake8 to see a list of linter violations.

• Autoformatter: yapf

– Run: yapf -d -r . to see needed style changes.

– Run: yapf -i file.py to apply style changes to a whole file, or use your IDE to apply yapf to a
selection.

26.1.2 Documentation

Python code should be documented with docstrings and added to the Sphinx documentation index in doc/. Docstrings
should follow Google style formatting for use in Napoleon.

165

https://www.python.org/dev/peps/pep-0008
https://github.com/google/yapf
http://flake8.pycqa.org/en/latest/
https://github.com/PyCQA/pep8-naming
https://gitlab.com/pycqa/flake8-docstrings
https://github.com/peterjc/flake8-rst-docstrings
https://github.com/google/yapf
https://www.sphinx-doc.org/en/master/usage/extensions/example_google.html#example-google
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

Fresnel Documentation, Release 0.13.1

26.2 C++/CUDA

• Style is set by clang-format >= 10

– Whitesmith’s indentation style.

– 100 character line width.

– Indent only with spaces.

– 4 spaces per indent level.

– See .clang-format for the full clang-format configuration.

• Naming conventions:

– Namespaces: All lowercase somenamespace

– Class names: UpperCamelCase

– Methods: lowerCamelCase

– Member variables: m_ prefix followed by lowercase with words separated by underscores
m_member_variable

– Constants: all upper-case with words separated by underscores SOME_CONSTANT

– Functions: lowerCamelCase

26.2.1 Tools

• Autoformatter: clang-format.

– Run: ./run-clang-format.py -r . to see needed changes.

– Run: clang-format -i file.c to apply the changes.

26.2.2 Documentation

Documentation comments should be in Javadoc format and precede the item they document for compatibility with
Doxygen and most source code editors. Multi-line documentation comment blocks start with /** and single line ones
start with ///.

26.3 Other file types

Use your best judgment and follow existing patterns when styling CMake and other files types. The following general
guidelines apply:

• 100 character line width.

• 4 spaces per indent level.

• 4 space indent.

166 Chapter 26. Code style

https://clang.llvm.org/docs/ClangFormat.html

Fresnel Documentation, Release 0.13.1

26.4 Editor configuration

Visual Studio Code users: Open the provided workspace file (fresnel.code-workspace) which provides con-
figuration settings for these style guidelines.

26.4. Editor configuration 167

https://code.visualstudio.com/

Fresnel Documentation, Release 0.13.1

168 Chapter 26. Code style

CHAPTER

TWENTYSEVEN

LICENSE

Fresnel Open Source Software License Copyright (c) 2016-2021 The Regents of
the University of Michigan All rights reserved.

Fresnel may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

169

Fresnel Documentation, Release 0.13.1

170 Chapter 27. License

CHAPTER

TWENTYEIGHT

CREDITS

The following people contributed to fresnel.

• Joshua A. Anderson, University of Michigan

• Bradley Dice, University of Michigan

• Jens Glaser, University of Michigan

• Tim Moore, University of Michigan

• Vyas Ramasubramani, University of Michigan

• Bryan VanSaders, University of Michigan

• Mike Henry, Boise State University

• Jenny Fothergill, Boise State University

• Corwin Kerr, University of Michigan

28.1 Libraries

Fresnel links to the following libraries:

28.1.1 Python

Python is used under the Python license (http://www.python.org/psf/license/).

28.1.2 Embree

Embree is used under the Apache License, 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

(continues on next page)

171

http://www.python.org/psf/license/
https://embree.github.io/

Fresnel Documentation, Release 0.13.1

(continued from previous page)

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

(continues on next page)

172 Chapter 28. Credits

Fresnel Documentation, Release 0.13.1

(continued from previous page)

worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions

(continues on next page)

28.1. Libraries 173

Fresnel Documentation, Release 0.13.1

(continued from previous page)

for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"

(continues on next page)

174 Chapter 28. Credits

Fresnel Documentation, Release 0.13.1

(continued from previous page)

replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

28.1.3 pybind11

pybind11 is used under the BSD 3-clause license:

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements

(continues on next page)

28.1. Libraries 175

https://github.com/pybind/pybind11/

Fresnel Documentation, Release 0.13.1

(continued from previous page)

available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

28.1.4 OptiX SDK

Portions of the OptiX SDK are used under the following license:

Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of NVIDIA CORPORATION nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28.1.5 Random123

Random123 is used to generate random numbers and is used under the following license:

Copyright 2010-2012, D. E. Shaw Research.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the

(continues on next page)

176 Chapter 28. Credits

Fresnel Documentation, Release 0.13.1

(continued from previous page)

documentation and/or other materials provided with the distribution.

* Neither the name of D. E. Shaw Research nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28.1.6 Intel TBB

Intel’s threaded building blocks library provides support for parallel execution on CPUS and is used under the follow-
ing license:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,

(continues on next page)

28.1. Libraries 177

Fresnel Documentation, Release 0.13.1

(continued from previous page)

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
(continues on next page)

178 Chapter 28. Credits

Fresnel Documentation, Release 0.13.1

(continued from previous page)

Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

(continues on next page)

28.1. Libraries 179

Fresnel Documentation, Release 0.13.1

(continued from previous page)

implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

180 Chapter 28. Credits

Fresnel Documentation, Release 0.13.1

28.1.7 qhull

Qhull is used under the following license:

Qhull, Copyright (c) 1993-2019

C.B. Barber
Arlington, MA

and

The National Science and Technology Research Center for
Computation and Visualization of Geometric Structures

(The Geometry Center)
University of Minnesota

email: qhull@qhull.org

This software includes Qhull from C.B. Barber and The Geometry Center.
Qhull is copyrighted as noted above. Qhull is free software and may
be obtained via http from www.qhull.org. It may be freely copied, modified,
and redistributed under the following conditions:

1. All copyright notices must remain intact in all files.

2. A copy of this text file must be distributed along with any copies
of Qhull that you redistribute; this includes copies that you have
modified, or copies of programs or other software products that
include Qhull.

3. If you modify Qhull, you must include a notice giving the
name of the person performing the modification, the date of
modification, and the reason for such modification.

4. When distributing modified versions of Qhull, or other software
products that include Qhull, you must provide notice that the original
source code may be obtained as noted above.

5. There is no warranty or other guarantee of fitness for Qhull, it is
provided solely "as is". Bug reports or fixes may be sent to
qhull_bug@qhull.org; the authors may or may not act on them as

they desire.

28.1. Libraries 181

Fresnel Documentation, Release 0.13.1

182 Chapter 28. Credits

CHAPTER

TWENTYNINE

INDEX

• genindex

• modindex

183

Fresnel Documentation, Release 0.13.1

184 Chapter 29. Index

PYTHON MODULE INDEX

f
fresnel, 139
fresnel.camera, 142
fresnel.color, 147
fresnel.geometry, 147
fresnel.light, 155
fresnel.material, 157
fresnel.tracer, 158
fresnel.util, 161
fresnel.version, 163

185

Fresnel Documentation, Release 0.13.1

186 Python Module Index

INDEX

A
angle() (fresnel.geometry.Polygon property), 153
anti_alias() (fresnel.tracer.Preview property), 160
Array (class in fresnel.util), 161
available_gpus (fresnel.Device attribute), 140
available_modes (fresnel.Device attribute), 140

B
background_alpha() (fresnel.Scene property), 140
background_color() (fresnel.Scene property), 140
basis() (fresnel.camera.Camera property), 142
Box (class in fresnel.geometry), 148
box() (fresnel.geometry.Box property), 148
box_color() (fresnel.geometry.Box property), 148
box_radius() (fresnel.geometry.Box property), 148
butterfly() (in module fresnel.light), 156

C
Camera (class in fresnel.camera), 142
camera() (fresnel.Scene property), 141
cloudy() (in module fresnel.light), 156
color() (fresnel.geometry.ConvexPolyhedron prop-

erty), 149
color() (fresnel.geometry.Cylinder property), 150
color() (fresnel.geometry.Mesh property), 152
color() (fresnel.geometry.Polygon property), 153
color() (fresnel.geometry.Sphere property), 154
color() (fresnel.material.Material property), 157
color_by_face() (fres-

nel.geometry.ConvexPolyhedron property),
149

convex_polyhedron_from_vertices() (in
module fresnel.util), 162

ConvexPolyhedron (class in fresnel.geometry), 148
Cylinder (class in fresnel.geometry), 150

D
depth_of_field() (fresnel.camera.Perspective

property), 145
Device (class in fresnel), 139
device() (fresnel.Scene property), 141
disable() (fresnel.geometry.Geometry method), 151

disable_highlight_warning() (fres-
nel.tracer.Tracer method), 160

dtype (fresnel.util.Array attribute), 162

E
enable() (fresnel.geometry.Geometry method), 151
enable_highlight_warning() (fres-

nel.tracer.Tracer method), 160

F
f_stop() (fresnel.camera.Perspective property), 145
fit() (fresnel.camera.Orthographic class method), 143
focal_length() (fresnel.camera.Perspective prop-

erty), 145
focus_distance() (fresnel.camera.Perspective

property), 146
focus_on() (fresnel.camera.Perspective property),

146
fresnel

module, 139
fresnel.camera

module, 142
fresnel.color

module, 147
fresnel.geometry

module, 147
fresnel.light

module, 155
fresnel.material

module, 157
fresnel.tracer

module, 158
fresnel.util

module, 161
fresnel.version

module, 163

G
Geometry (class in fresnel.geometry), 151
get_extents() (fresnel.geometry.ConvexPolyhedron

method), 149

187

Fresnel Documentation, Release 0.13.1

get_extents() (fresnel.geometry.Cylinder method),
151

get_extents() (fresnel.geometry.Mesh method), 152
get_extents() (fresnel.geometry.Polygon method),

153
get_extents() (fresnel.geometry.Sphere method),

154
get_extents() (fresnel.Scene method), 141

H
height() (fresnel.camera.Camera property), 142
histogram() (fresnel.tracer.Tracer method), 160

I
ImageArray (class in fresnel.util), 162

L
Light (class in fresnel.light), 155
lightbox() (in module fresnel.light), 156
lights() (fresnel.Scene property), 141
linear() (in module fresnel.color), 147
linear_output() (fresnel.tracer.Tracer property),

160
look_at() (fresnel.camera.Camera property), 142
loop() (in module fresnel.light), 156

M
Material (class in fresnel.material), 157
material() (fresnel.geometry.Geometry property),

151
Mesh (class in fresnel.geometry), 151
metal() (fresnel.material.Material property), 157
mode() (fresnel.Device property), 140
module

fresnel, 139
fresnel.camera, 142
fresnel.color, 147
fresnel.geometry, 147
fresnel.light, 155
fresnel.material, 157
fresnel.tracer, 158
fresnel.util, 161
fresnel.version, 163

O
orientation() (fresnel.geometry.ConvexPolyhedron

property), 150
orientation() (fresnel.geometry.Mesh property),

152
Orthographic (class in fresnel.camera), 143
outline_material() (fresnel.geometry.Geometry

property), 151
outline_width() (fresnel.geometry.Geometry prop-

erty), 151

output() (fresnel.tracer.Tracer property), 160

P
Path (class in fresnel.tracer), 158
pathtrace() (in module fresnel), 141
Perspective (class in fresnel.camera), 144
points() (fresnel.geometry.Cylinder property), 151
Polygon (class in fresnel.geometry), 152
position() (fresnel.camera.Camera property), 142
position() (fresnel.geometry.ConvexPolyhedron

property), 150
position() (fresnel.geometry.Mesh property), 152
position() (fresnel.geometry.Polygon property), 153
position() (fresnel.geometry.Sphere property), 154
Preview (class in fresnel.tracer), 159
preview() (in module fresnel), 141
primitive_color_mix() (fres-

nel.material.Material property), 158

R
radius() (fresnel.geometry.Cylinder property), 151
radius() (fresnel.geometry.Sphere property), 154
rembrandt() (in module fresnel.light), 156
remove() (fresnel.geometry.Geometry method), 151
render() (fresnel.tracer.Tracer method), 161
reset() (fresnel.tracer.Path method), 159
resize() (fresnel.tracer.Tracer method), 161
ring() (in module fresnel.light), 156
roughness() (fresnel.material.Material property),

158

S
sample() (fresnel.tracer.Path method), 159
Scene (class in fresnel), 140
seed() (fresnel.tracer.Tracer property), 161
shape (fresnel.util.Array attribute), 162
solid() (fresnel.material.Material property), 158
spec_trans() (fresnel.material.Material property),

158
specular() (fresnel.material.Material property), 158
Sphere (class in fresnel.geometry), 153

T
Tracer (class in fresnel.tracer), 160

U
up() (fresnel.camera.Camera property), 143

V
version (in module fresnel.version), 163
vertical_field_of_view() (fres-

nel.camera.Perspective property), 146

188 Index

	Gallery
	Research
	Features
	Installation
	Change log
	User community
	Introduction
	Primitive properties
	Material properties
	Outline materials
	Scene properties
	Lighting setups
	Sphere
	Cylinder
	Convex polyhedron
	Mesh
	Polygon
	Box
	Multiple geometries
	Devices
	Tracer methods
	Interactive scene view
	Rendering images in matplotlib
	Visualizing GSD File
	fresnel
	Code style
	License
	Credits
	Index
	Python Module Index
	Index

