
Fresnel Documentation
Release 0.6.0

The Regents of the University of Michigan

Jul 09, 2018

Getting started

1 Samples 3

Python Module Index 109

i

ii

Fresnel Documentation, Release 0.6.0

fresnel is a python library for path tracing publication quality images of soft matter simulations in real time. The
fastest render performance is possible on NVIDIA GPUs using their OptiX ray tracing engine. fresnel also supports
multi-core CPUs using Intel’s Embree ray tracing kernels. Path tracing enables high quality global illumination and
advanced rendering effects controlled by intuitive parameters (like roughness, specular, and metal).

Getting started 1

https://developer.nvidia.com/optix
https://embree.github.io/

Fresnel Documentation, Release 0.6.0

2 Getting started

CHAPTER 1

Samples

Here are a few quick samples of what fresnel can do:

3

Fresnel Documentation, Release 0.6.0

import fresnel, numpy, PIL

data = numpy.load('spheres.npz')

scene = fresnel.Scene()
scene.lights = fresnel.light.cloudy()

geometry = fresnel.geometry.Sphere(
scene,
position = data['position'],
radius = 0.5,
outline_width = 0.1)

geometry.material = fresnel.material.Material(

(continues on next page)

4 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

(continued from previous page)

color = fresnel.color.linear([0.1, 0.8, 0.1]),
roughness = 0.8,
specular = 0.2)

out = fresnel.pathtrace(scene, samples=64, light_samples=32, w=500, h=500)

import fresnel, numpy, math, PIL

data = numpy.load('cuboids.npz')

scene = fresnel.Scene()
scene.lights = fresnel.light.lightbox()

(continues on next page)

5

Fresnel Documentation, Release 0.6.0

(continued from previous page)

geometry = fresnel.geometry.ConvexPolyhedron(
scene,
origins = [[-data['width'][0],0,0], [data['width'][0],0,0], [0, -data['width'][1],

→˓ 0],
[0, data['width'][1], 0], [0, 0, -data['width'][2]], [0, 0, data['width

→˓'][2]]],
normals = [[-1,0,0], [1,0,0], [0, -1, 0],

[0, 1, 0],[0, 0, -1], [0, 0, 1]],
r = math.sqrt(data['width'][0]**2 + data['width'][1]**2 + data['width'][2]**2),
position = data['position'],
orientation = data['orientation'],
outline_width = 0.015)

geometry.material = fresnel.material.Material(
color = fresnel.color.linear([0.1, 0.1, 0.6]),
roughness = 0.1,
specular = 1)

geometry.outline_material = fresnel.material.Material(
color = (0.95,0.93,0.88),
roughness = 0.1,
metal = 1.0)

scene.camera = fresnel.camera.fit(scene, view='front')

out = fresnel.pathtrace(scene, samples=64, light_samples=32, w=500, h=500)

1.1 Installation

Fresnel binary images are available on Docker Hub and packages on conda-forge. You can also compile fresnel from
source.

1.1.1 Anaconda package

Fresnel is available on conda-forge. To install, first download and install miniconda. Then add the conda-forge
channel and install fresnel:

$ conda config --add channels conda-forge
$ conda install fresnel

jupyter and matplotlib are required to execute the fresnel example notebooks, install

$ conda install jupyter matplotlib

You can update fresnel with:

$ conda update fresnel

1.1.2 Docker images

Pull the docker image glotzerlab/software to get fresnel along with many other tools commonly used in simulation
and analysis workflows. See full usage information on the glotzerlab/software docker hub page.

Singularity:

6 Chapter 1. Samples

https://hub.docker.com/
https://conda-forge.org/
https://conda-forge.org/
http://conda.pydata.org/miniconda.html
https://bitbucket.org/glotzer/fresnel-examples
https://hub.docker.com/r/glotzerlab/software/
https://hub.docker.com/r/glotzerlab/software/

Fresnel Documentation, Release 0.6.0

$ umask 002
$ singularity pull docker://glotzerlab/software

Docker:

$ docker pull glotzerlab/software

1.1.3 Compile from source

Download source releases directly from the web: https://glotzerlab.engin.umich.edu/Downloads/fresnel

$ curl -O https://glotzerlab.engin.umich.edu/Downloads/fresnel/fresnel-v0.6.0.tar.gz

Or, clone using git:

$ git clone --recursive https://bitbucket.org/glotzer/fresnel.git

Fresnel uses git submodules. Either clone with the --recursive option, or execute git submodule update
--init to fetch the submodules.

Prerequisites

• C++11 capable compiler

• CMake >= 2.8

• Python >= 2.7

• For CPU execution (required when ENABLE_EMBREE=ON):

– Intel TBB >= 4.3.20150611

– Intel Embree >= 3.0.0

• For GPU execution (required when ENABLE_OPTIX=ON):

– OptiX >= 4.0

– CUDA >= 7.5

• To execute tests:

– pytest

– pillow

ENABLE_EMBREE (defaults ON) and ENABLE_OPTIX (defaults OFF) are orthogonal settings, either or both may
be enabled.

Optional dependencies

• pytest

– Required to execute unit tests.

• pillow

– Required to display rendered output in Jupyter notebooks automatically.

• sphinx

1.1. Installation 7

https://glotzerlab.engin.umich.edu/Downloads/fresnel

Fresnel Documentation, Release 0.6.0

– Required to build the user documentation.

• doxygen

– Requited to build developer documentation.

Compile

Configure with cmake and compile with make. Replace ${PREFIX} your desired installation location.

$ mkdir build
$ cd build
$ cmake ../ -DCMAKE_INSTALL_PREFIX=${PREFIX}/lib/python
$ make install -j10

By default, fresnel builds the Embree (CPU) backend. Pass -DENABLE_OPTIX=ON to cmake to enable the GPU
accelerated OptiX backend.

Add ${PREFIX}/lib/python to your PYTHONPATH to use fresnel.

$ export PYTHONPATH=$PYTHONPATH:${PREFIX}/lib/python

Run tests

Fresnel has extensive unit tests to verify correct execution.

$ export PYTHONPATH=/path/to/build
$ cd /path/to/fresnel
$ cd test
$ pytest

Build user documentation

Build the user documentation with sphinx:

$ cd /path/to/fresnel
$ cd doc
$ make html
$ open build/html/index.html

Specify search paths

OptiX, TBB, Embree, and Python may be installed in a variety of locations. To specify locations for libraries, use
these methods the first time you invoke cmake in a clean build directory.

Li-
brary

Default search
path

CMake Custom search path

OptiX /opt/optix -DOptiX_INSTALL_DIR=/path/to/optix
TBB system TBB_LINK=/path/to/tbb/lib (env var)
Em-
bree

system -Dembree_DIR=/path/to/embree-3.x.y (the directory containing
embree-config.cmake)

Python $PATH -DPYTHON_EXECUTABLE=/path/to/bin/python

8 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Build C++ Documentation

To build the developer documentation, execute doxygen in the repository root. It will write HTML output in
devdoc/html/index.html.

1.2 Change log

fresnel releases follow semantic versioning.

1.2.1 v0.6.0 (2018-07-06)

• Implement tracer.Path on the GPU.

• Implement ConvexPolyhedron geometry on the GPU.

• Improve path tracer performance with Russian roulette termination.

• Compile warning-free.

• Fix sphere intersection test bugs on the GPU.

• tracer.Path now correctly starts sampling over when resized.

• Wrap C++ code with pybind 2.2

• Make documentation available on readthedocs: http://fresnel.readthedocs.io

• Fresnel is now available on conda-forge: https://anaconda.org/conda-forge/fresnel

• embree >= 3.0 is now required for CPU support

• Improve documentation

1.2.2 v0.5.0 (2017-07-27)

• Add new lighting setups

– lightbox

– cloudy

– ring

• Adjust brightness of lights in existing setups

• Remove clearcoat material parameter

• Add spec_trans material parameter

• Add Path tracer to render scenes with indirect lighting, reflections, and transparency (CPU-only)

• Add ConvexPolyhedron geometry (CPU-only, beta API, subject to change)

• Add fresnel.preview function to easily generate Preview traced renders with one line

• Add fresnel.pathtrace function to easily generate Path traced renders with one line

• Add anti-aliasing (always on for the Path tracer, set aa_level > 0 to enable for Preview)

• API breaking changes:

– render no longer exists. Use preview or pathtrace.

1.2. Change log 9

https://bitbucket.org/glotzer/fresnel
https://semver.org/
http://fresnel.readthedocs.io
https://anaconda.org/conda-forge/fresnel

Fresnel Documentation, Release 0.6.0

– tracer.Direct is now tracer.Preview.

CPU-only features will be implemented on the GPU in a future release.

1.2.3 v0.4.0 (2017-04-03)

• Enforce requirement: Embree >= 2.10.0

• Enforce requirement Pybind =1.8.1

• Enforce requirement TBB >= 4.3

• Rewrite camera API, add camera.fit to fit the scene

• scenes default to an automatic fit camera

• Implement area lights, add default lighting setups

• Scene now supports up to 4 lights, specified in camera space

• Implement Disney’s principled BRDF

• Tracer.histogram computes a histogram of the rendered image

• Tracer.enable_highlight_warning highlights overexposed pixels with a given warning color

• Device.available_modes lists the available execution modes

• Device.available_gpus lists the available GPUs

• Device can now be limited to n GPUs

• API breaking changes:

– camera.Orthographic is now camera.orthographic

– Device now takes the argument n instead of limit

– Scene no longer has a light_direction member

1.2.4 v0.3.0 (2017-03-09)

• Suppress “cannot import name” messages

• Support Nx3 and Nx4 inputs to color.linear

1.2.5 v0.2.0 (2017-03-03)

• Parallel rendering on the CPU

• Fix PTX file installation

• Fix python 2.7 support

• Unit tests

• Fix bug in sphere rendering on GPU

10 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.2.6 v0.1.0 (2017-02-02)

• Prototype API

• Sphere geometry

• Prism geometry

• outline materials

• diffuse materials

• Direct tracer

1.3 User community

1.3.1 fresnel-users mailing list

Subscribe to the fresnel-users mailing list to recieve release announcements, post questions for advice on using the
software, and discuss potential new features.

1.3.2 Issue tracker

File bug reports on frenel’s issue tracker.

1.3.3 Contribute

fresnel is an open source project. Contributions are accepted via pull request to fresnel’s bitbucket repository. Please
review CONTRIBUTING.MD in the repository before starting development. You are encouraged to discuss your
proposed contribution with the fresnel user and developer community who can help you design your contribution to
fit smoothly into the existing ecosystem.

1.4 Introduction

Fresnel is a python library that can ray trace publication quality images in real time. It provides a simple python API
to define a scene consisting of any number of geometry primitives and render it to an output image.

To start, import the fresnel python module.

In [1]: import fresnel

1.4.1 Define a scene

A Scene defines a coordinate system, the camera view, the light sources, and contains a number of geometry prim-
itives. Create a new Scene class instance. Scenes come with a default automatic camera that fits the geometry and a
default set of lights.

In [2]: scene = fresnel.Scene()

1.3. User community 11

https://groups.google.com/d/forum/fresnel-users
https://bitbucket.org/glotzer/fresnel/issues?status=new&status=open
https://bitbucket.org/glotzer/fresnel

Fresnel Documentation, Release 0.6.0

1.4.2 Add geometry to the scene

A Scene may consist of any number of geometry objects. Each geometry object consists of N primitives of the same
type, and a material that describes how the primitives interact with light sources. Create 8 spheres with radius 1.0.

In [3]: geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)

Geometry objects have a number of per-primitive attributes. These are exposed with an interface compatible with
numpy arrays, and can copy data from numpy arrays efficiently. Set the positions of the spheres:

In [4]: geometry.position[:] = [[1,1,1],
[1,1,-1],
[1,-1,1],
[1,-1,-1],
[-1,1,1],
[-1,1,-1],
[-1,-1,1],
[-1,-1,-1]]

Set the material of the geometry object to a rough blue surface:

In [5]: geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
roughness=0.8)

1.4.3 Render the scene

preview quickly renders the scene from the view point of the camera.

In [6]: fresnel.preview(scene)

Enable anti-aliasing if you plan to use the output of preview for production use. The scene will take longer to render,
but will have crisp edges.

12 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

In [7]: fresnel.preview(scene, aa_level=3)

preview only applies direct lighting. Use pathtrace to account for indirect lighting. (anti-aliasing is always enabled
when path tracing).

In [8]: fresnel.pathtrace(scene)

1.4. Introduction 13

Fresnel Documentation, Release 0.6.0

The resulting image is noisy. Increase the number of light samples to obtain a clean image.

In [9]: fresnel.pathtrace(scene, light_samples=40)

14 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.4.4 Save output

preview and pathtrace return output buffers that can be used like HxWx4 RGBA numpy arrays. You can pass this
standard format on to other python libraries that work images (e.g. matplotlib).

In [10]: out = fresnel.preview(scene, aa_level=3)
print(out[:].shape)
print(out[:].dtype)

(370, 600, 4)
uint8

Use Pillow to save the rendered output to a png file with transparency.

In [11]: import PIL

In [12]: image = PIL.Image.fromarray(out[:], mode='RGBA')
image.save('output.png')

To save a JPEG, create an RGB image. This ignores the alpha channel, so the scene background color will show.

In [13]: image = PIL.Image.fromarray(out[:,:,0:3], mode='RGB')
image.save('output.jpeg')

This is what output.jpeg looks like (the default background color is black):

In [16]: import IPython.display
IPython.display.Image('output.jpeg')

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.4. Introduction 15

https://matplotlib.org/
https://pillow.readthedocs.io
https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.5 Primitive properties

Each geometry type specifies a number of per-primitive properties. For example, the Sphere geometry has per-
primitive position, radius, and color.

In [1]: import fresnel
scene = fresnel.Scene()

1.5.1 Setting properties when creating the geometry

Any of the properties may be set when the geometry is created, or they may be left as default values.

In [2]: geometry = fresnel.geometry.Sphere(scene,
position = [[1,0,1],

[1,0,-1],
[-1,0,1],
[-1,0,-1]],

radius=1.0,
material = fresnel.material.Material(color=fresnel.color.linear([0.42,0.267,1]))
per-primitive color left default
)

In [3]: fresnel.preview(scene, aa_level=3)

1.5.2 Changing properties after creation

Access the per-primitive properties as if they were numpy arrays. The radius property for the Sphere geometry sets
the radius of each primitive.

In [4]: geometry.radius[:] = [0.5, 0.6, 0.8, 1.0]

16 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

In [5]: fresnel.preview(scene, aa_level=3)

The position property sets the position of each sphere in the scene’s coordinate system.

In [6]: geometry.position[:] = [[1.5,0,1],
[1.5,0,-1],
[-1.5,0,1],
[-1.5,0,-1]]

In [7]: fresnel.preview(scene, aa_level=3)

1.5. Primitive properties 17

Fresnel Documentation, Release 0.6.0

The color property sets a per primitive color. The geometry material color and the primitive color are mixed with
fraction primitive_color_mix. A value of 1.0 selects the primitive color, 0.0 selects the material color and values in
between mix the colors.

In [8]: geometry.material.primitive_color_mix = 1.0
geometry.color[:] = fresnel.color.linear([[1,1,1], [0,0,1], [0,1,0], [1,0,0]])

In [9]: fresnel.preview(scene, aa_level=3)

18 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

In [10]: geometry.material.primitive_color_mix = 0.5

In [11]: fresnel.preview(scene, aa_level=3)

1.5. Primitive properties 19

Fresnel Documentation, Release 0.6.0

1.5.3 Reading primitive properties

Primitive properties may be read as well as written.

In [12]: geometry.radius[:]

Out[12]: array([0.5, 0.6, 0.8, 1.], dtype=float32)

In [13]: geometry.position[:]

Out[13]: array([[1.5, 0. , 1.],
[1.5, 0. , -1.],
[-1.5, 0. , 1.],
[-1.5, 0. , -1.]], dtype=float32)

In [14]: geometry.color[:]

Out[14]: array([[1., 1., 1.],
[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]], dtype=float32)

1.5.4 Common errors

Primitive properties may be accessed like numpy arrays, but they may not be assigned directly.

In [15]: geometry.radius = 1.0

AttributeError Traceback (most recent call last)
<ipython-input-15-020bd663bace> in <module>()
----> 1 geometry.radius = 1.0

AttributeError: can't set attribute

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.6 Material properties

Each geometry has an associated material. The material is a set of parameters that defines how light interacts with
the geometry. Here is a test scene to demonstrate these properties.

In [1]: import fresnel
import math
device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)

1.6.1 Material color

The color of a material sets its base color. Default material parameters set a primarily diffuse material with light
specular highlights.

20 Chapter 1. Samples

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

In [2]: geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.9,0.714,0.169]))

In [3]: fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

1.6.2 Solid color materials

Set the solid parameter to 1.0 to disable material interaction with light. A solid material has no shading applied and
always displays as color.

In [4]: geometry.material.solid = 1.0

In [5]: fresnel.preview(scene, w=300, h=300, aa_level=3)

1.6. Material properties 21

Fresnel Documentation, Release 0.6.0

1.6.3 Geometry / primitive color mixing

Set primitive_color_mix to any value in the range 0.0 to 1.0 to control the amount that the per-primitive colors mix
with the geometry color.

In [6]: geometry.material.primitive_color_mix = 0.5
geometry.color[::2] = fresnel.color.linear([0,0,0])
geometry.color[1::2] = fresnel.color.linear([1,1,1])

In [7]: fresnel.preview(scene, w=300, h=300, aa_level=3)

22 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Typical use cases utilize values of either 0.0 (force a single color defined by the material) or 1.0 (force the per primitive
color.)

In [8]: geometry.material.primitive_color_mix = 1.0

geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])

In [9]: fresnel.preview(scene, w=300, h=300, aa_level=3)

1.6. Material properties 23

Fresnel Documentation, Release 0.6.0

To use a matplotlib color map, pass the output of the color map to fresnel.color.linear so the output colors
appear as intended.

In [10]: import matplotlib, matplotlib.cm
import numpy
geometry.material.solid = 0.0
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=True),

cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))

In [11]: fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

24 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.6.4 All properties

Materials have a number of intuitive properties. All are defined in a nominal range from 0 to 1, though some values
can be pushed past 1 for extremely strong effects.

• roughness - Set the roughness of the material. Recommend values >= 0.1.

• specular - Control the strength of the specular highlights

• metal - 0: dielectric materials (plastic, glass, etc. . .). 1: pure metals.

• spec_trans - Set the fraction of light that passes through the material.

Here are some examples of different material parameters.

In [12]: scene2 = fresnel.Scene(device)
spheres = []
for i in range(11):

spheres.append(fresnel.geometry.Sphere(scene2, position = (i, 0, 0), radius=0.4))
spheres[i].material = fresnel.material.Material(color=(.1,.7,.1))

tracer = fresnel.tracer.Path(device=device, w=1000, h=75)

scene2.lights = [fresnel.light.Light(direction=(1,1,-1), color=(0.5, 0.5, 0.5)),
fresnel.light.Light(direction=(-1,-1,1), color=(0.5, 0.5, 0.5))]

Examples

These examples are front lit from the lower left and back lit from the upper right.

1.6. Material properties 25

Fresnel Documentation, Release 0.6.0

Vary roughness in a specular material from 0.1 to 1.1

In [13]: for i in range(11):
spheres[i].material.specular = 1.0
spheres[i].material.roughness = i/10+0.1

tracer.sample(scene2, samples=64, light_samples=40)

Vary specular from 0 to 1 with constant roughness.

In [14]: for i in range(11):
spheres[i].material.specular = i/10
spheres[i].material.roughness = 0.1
spheres[i].material.color=(.7,.1,.1)

tracer.sample(scene2, samples=64, light_samples=40)

The following examples use cloudy lighting which places a bright hemisphere of light above the scene and a dim
hemisphere of light below the scene.

Vary metal from 0 to 1 with a rough material. (metal materials look best when there is other geometry to reflect from
the surface)

In [15]: for i in range(11):
spheres[i].material.specular = 1.0
spheres[i].material.color=(.7,.7,.7)
spheres[i].material.metal = i/10

scene2.lights = fresnel.light.cloudy()
tracer.sample(scene2, samples=64, light_samples=40)

Vary spec_trans from 0 to 1 with all other quantities constant.

In [16]: for i in range(11):
spheres[i].material.metal = 0.0
spheres[i].material.spec_trans = i/10
spheres[i].material.color=(.1,.1,.7)

tracer.sample(scene2, samples=64, light_samples=40)

Execute this notebook with ipywidgets installed and use the panel below to explore the material parameters and how
they react to different lighting angles.

In [17]: import ipywidgets

tracer.resize(450,450)

26 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

@ipywidgets.interact(color=ipywidgets.ColorPicker(value='#1c1c7f'),
primitive_color_mix=ipywidgets.FloatSlider(value=0.0, min=0.0, max=1.0, step=0.1, continuous_update=False),
roughness=ipywidgets.FloatSlider(value=0.3, min=0.1, max=1.0, step=0.1, continuous_update=False),
specular=ipywidgets.FloatSlider(value=0.5, min=0.0, max=1.0, step=0.1, continuous_update=False),
spec_trans=ipywidgets.FloatSlider(value=0.0, min=0.0, max=1.0, step=0.1, continuous_update=False),
metal=ipywidgets.FloatSlider(value=0, min=0.0, max=1.0, step=1.0, continuous_update=False),
light_theta=ipywidgets.FloatSlider(value=5.5, min=0.0, max=2*math.pi, step=0.1, continuous_update=False),
light_phi=ipywidgets.FloatSlider(value=0.8, min=0.0, max=math.pi, step=0.1, continuous_update=False))

def test(color, primitive_color_mix, roughness, specular, spec_trans, metal, light_theta, light_phi):
r = int(color[1:3], 16)/255;
g = int(color[3:5], 16)/255;
b = int(color[5:7], 16)/255;
scene.lights[0].direction = (math.sin(light_phi)*math.cos(-light_theta),

math.cos(light_phi),
math.sin(light_phi)*math.sin(-light_theta))

scene.lights[1].theta = math.pi
geometry.material = fresnel.material.Material(color=fresnel.color.linear([r,g,b]),

primitive_color_mix=primitive_color_mix,
roughness=roughness,
metal=metal,
specular=specular,
spec_trans=spec_trans
)

return tracer.sample(scene, samples=64, light_samples=1)

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.7 Outline materials

Each geometry has an associated outline material and an outline width. The outline material has all the same
attributes as a normal material, but it is only applied in a thin line around each geometry primitive. The width of that
line is the outline width.

In [1]: import fresnel
import math
scene = fresnel.Scene()
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0, color=fresnel.color.linear([0,0,0]))
fresnel.light.cloudy();

Out[1]: [<fresnel.light.Light at 0x7f6a380e19e8>,
<fresnel.light.Light at 0x7f6a380a9358>]

1.7. Outline materials 27

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.7.1 Enabling outlines

The default outline width is 0. Set a non-zero outline width to enable the outlines.

In [2]: geometry.outline_width

Out[2]: 0.0

The outline width is in distance units in the same coordinate system as scene. The is width units wide perpendicular
to the view direction. Outlines enhance the separation between primitives visually. They work well with diffuse and
solid colored primitives.

In [3]: geometry.outline_width = 0.12

In [4]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

In [5]: geometry.material.solid = 1.0

In [6]: fresnel.preview(scene, w=300, h=300, aa_level=3)

28 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.7.2 Outline material properties

The default outline material is a solid black.

In [7]: geometry.outline_material.color

Out[7]: (0.0, 0.0, 0.0)

In [8]: geometry.outline_material.solid

Out[8]: 1.0

In [9]: geometry.outline_material.primitive_color_mix

Out[9]: 0.0

The outline material has all the same properties as a normal material.

In [10]: geometry.outline_material.color = fresnel.color.linear(fresnel.color.linear([0.08,0.341,0.9]))

In [11]: fresnel.preview(scene, w=300, h=300, aa_level=3)

1.7. Outline materials 29

Fresnel Documentation, Release 0.6.0

Outlines may be colored by the primitives:

In [12]: geometry.material.primitive_color_mix = 0.0
geometry.outline_material.primitive_color_mix = 1.0
geometry.outline_width = 0.4

In [13]: fresnel.preview(scene, w=300, h=300, aa_level=3)

30 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Outlines may have diffuse shading:

In [14]: geometry.material.color = fresnel.color.linear([1,1,1])
geometry.material.solid = 0
geometry.outline_material.solid = 0

In [15]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

1.7. Outline materials 31

Fresnel Documentation, Release 0.6.0

Or be metallic:

In [16]: geometry.material.color = fresnel.color.linear([0.08,0.341,0.9])

geometry.outline_material.solid = 0
geometry.outline_material.color = [0.95,0.95,0.95]
geometry.outline_material.roughness = 0.1
geometry.outline_material.metal = 1
geometry.outline_material.primitive_color_mix = 0.0
geometry.outline_width = 0.2

In [17]: fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

32 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.8 Scene properties

Each Scene has a background color and alpha, lights, and a camera.

In [1]: import fresnel
import math
scene = fresnel.Scene()
position = []
for i in range(6):

position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169]))
geometry.outline_width = 0.12

1.8.1 Background color and alpha

The default background color is black (0,0,0) and the background alpha is 0 (transparent).

In [4]: scene.background_color

Out[4]: (0.0, 0.0, 0.0)

In [5]: scene.background_alpha

Out[5]: 0.0

1.8. Scene properties 33

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

The background color is applied to any pixel in the output image where no object is present. Change the background
alpha to only partially transparent:

In [6]: scene.background_alpha = 0.5

In [7]: fresnel.preview(scene, aa_level=3)

Set a solid background color:

In [8]: scene.background_alpha = 1.0
scene.background_color = fresnel.color.linear([0.592, 0.722, 0.98])

In [9]: fresnel.preview(scene, aa_level=3)

34 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.8.2 Light sources

Light sources light the objects in the scene. Without lights, all objects are black.

In [10]: scene.lights.clear()

In [11]: fresnel.preview(scene, aa_level=3)

1.8. Scene properties 35

Fresnel Documentation, Release 0.6.0

Fresnel defines several standard lighting setups that may be easily applied.

In [12]: scene.lights = fresnel.light.butterfly()

In [13]: fresnel.preview(scene, aa_level=3)

36 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

You can modify individual lights.

In [15]: scene.lights[0].direction = (-1, 0, 1)

In [16]: fresnel.preview(scene, aa_level=3)

1.8.3 Camera

The camera defines the view to render into the scene. By default, the camera is auto and the camera is automatically
selected to fit the scene every time it is rendered.

In [17]: print(scene.camera)

auto

A camera is defined by its position, look-at point, up vector and height of the view into the scene. All of these
quantities are in scene coordinates.

In [18]: scene.camera = fresnel.camera.orthographic(position=(0,0,2), look_at=(0,0,0), up=(0,1,0), height=6)
fresnel.preview(scene, aa_level=3)

1.8. Scene properties 37

Fresnel Documentation, Release 0.6.0

You can modify these parameters individually.

In [19]: scene.camera.position = (3, 0, 10)
scene.camera.look_at=(3,0,0)

In [20]: fresnel.preview(scene, aa_level=3)

38 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.9 Lighting setups

Each Scene has associated lights. The lights control how the objects in a scene is lit.

In [1]: import fresnel
import math
import matplotlib, matplotlib.cm
from matplotlib import pyplot
%matplotlib inline
import numpy

device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(primitive_color_mix=1.0, color=(1,1,1))
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=True),

cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))
scene.camera = fresnel.camera.fit(scene, view='isometric')
tracer = fresnel.tracer.Path(device, w=450, h=450)

1.9. Lighting setups 39

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.9.1 Lighting presets

Fresnel defines many lighting presets that use classic photography techniques to light the scene. Create a setup and
assign it to the Scene’s lights.

The images in these examples are noisy because of the small number of samples. Increase the number of samples to
obtain less noisy images.

Light box

Light box lighting lights from the top, bottom, left, and right. This type of lighting is commonly used product photog-
raphy.

In [2]: scene.lights = fresnel.light.lightbox()
tracer.sample(scene, samples=64, light_samples=10)

40 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Cloudy

Cloudy lighting mimics a cloudy day. Strong light comes from all directions above, while weak light comes from
below.

In [3]: scene.lights = fresnel.light.cloudy()
tracer.sample(scene, samples=64, light_samples=10)

Rembrandt

Rembrandt lighting places the key light 45 degrees to one side and slightly up.

In [4]: scene.lights = fresnel.light.rembrandt()
tracer.sample(scene, samples=64, light_samples=10)

1.9. Lighting setups 41

Fresnel Documentation, Release 0.6.0

Use the side argument specify which side to place the key light on.

In [5]: scene.lights = fresnel.light.rembrandt(side='left')
tracer.sample(scene, samples=64, light_samples=10)

42 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Loop lighting

Loop lighting places the key light slightly to one side and slightly up.

In [6]: scene.lights = fresnel.light.loop()
tracer.sample(scene, samples=64, light_samples=10)

1.9. Lighting setups 43

Fresnel Documentation, Release 0.6.0

Butterfly lighting

Butterfly lighting places the key light high above the camera.

In [7]: scene.lights = fresnel.light.butterfly()
tracer.sample(scene, samples=64, light_samples=10)

44 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Ring lighting

The ring lighting setup provides a strong front area light. This type of lighting is common in fashion photography.

In [8]: scene.lights = fresnel.light.ring()
tracer.sample(scene, samples=64, light_samples=10)

1.9. Lighting setups 45

Fresnel Documentation, Release 0.6.0

1.9.2 Custom lights

You can define your own custom lights. Provide a direction vector pointing to the light in the coordinate system of the
camera (+x points to the right, +y points up, and +z points out of the screen). The light color defines both the color
(RGB) and the intensity of the light in a linear sRGB color space.

In [9]: my_lights = [fresnel.light.Light(direction=(1,-1,1), color=(1,1,1))]
scene.lights = my_lights

In [10]: tracer.sample(scene, samples=64, light_samples=10)

46 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

The shadows are very dark. Add another light to fill them in. You can access the scene’s lights directly. The value
theta defines the half angle width of the light source. Large lights provide soft shadows.

In [11]: scene.lights.append(fresnel.light.Light(direction=(0,0,1), color=(1,1,1), theta=3.14))
tracer.sample(scene, samples=64, light_samples=10)

1.9. Lighting setups 47

Fresnel Documentation, Release 0.6.0

This image is overexposed.

Highlight warnings show overexposed areas of the image as a special color (default: magenta).

In [12]: tracer.enable_highlight_warning()
tracer.render(scene)

48 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

If the histogram is blocking up at 1.0, there are overexposed highlights.

In [13]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

1.9. Lighting setups 49

Fresnel Documentation, Release 0.6.0

Reduce the intensity of the light to correctly expose the image.

In [14]: scene.lights[1].color=(0.45,0.45,0.45)
tracer.sample(scene, samples=64, light_samples=10)

50 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Now there are no clipping warnings and the histogram shows a perfectly exposed image.

In [15]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

1.9. Lighting setups 51

Fresnel Documentation, Release 0.6.0

scene.lights has typical sequence like behavior. You can assign a sequence of Light objects to it, append lights
to it, and loop over the lights in it. For example, reverse the direction of every light:

In [16]: for l in scene.lights:
d = l.direction;
l.direction = (-d[0], -d[1], -d[2])

In [17]: scene.lights[1].color=(0.05,0.05,0.05)
tracer.disable_highlight_warning()
tracer.sample(scene, samples=64, light_samples=10)

52 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.10 Sphere

In [1]: import fresnel
scene = fresnel.Scene()

The sphere geometry defines a set of N spheres. Each sphere has its own position, radius, and color.

In [2]: geometry = fresnel.geometry.Sphere(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),

roughness=0.8)

1.10. Sphere 53

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.10.1 Geometric properties

position defines the position of each sphere.

In [3]: geometry.position[:] = [[-2,0,0], [0, 0, 0], [3, 0, 0]]

radius sets the radius of each sphere.

In [4]: geometry.radius[:] = [0.5, 1.0, 1.5]

In [5]: scene.camera = fresnel.camera.fit(scene, view='front', margin=0.5)
fresnel.preview(scene, aa_level=3)

1.10.2 Color

color sets the color of each sphere (when when primitive_color_mix > 0)

In [6]: geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0

In [7]: fresnel.preview(scene, aa_level=3)

54 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.10.3 Outlines

Outlines are applied on the outer edge of the sphere in the view plane.

In [8]: geometry.outline_width = 0.05

In [9]: fresnel.preview(scene, aa_level=3)

1.10. Sphere 55

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.11 Cylinder

In [1]: import fresnel
scene = fresnel.Scene()

The cylinder geometry defines a set of N spherocylinders. Each spherocylinder is defined by two end points and has
its own radius, and end point colors.

In [2]: geometry = fresnel.geometry.Cylinder(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),

roughness=0.8)

1.11.1 Geometric properties

points defines the end points of each cylinder.

In [3]: geometry.points[:] = [[[-5,-1,-1], [-2, 1, 1]],
[[1, -2, 1],[0, 2, -1]],
[[5, -1.5, 2], [3, 1.5, -2]]]

radius sets the radius of each spherocylinder.

In [4]: geometry.radius[:] = [0.5, 1.0, 1.5]

In [5]: scene.camera = fresnel.camera.fit(scene, view='front', margin=0.5)
fresnel.preview(scene, aa_level=3)

56 Chapter 1. Samples

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.11.2 Color

color sets the color of the end points of each cylinder (when primitive_color_mix > 0). The color transitions at the
midpoint.

In [6]: geometry.color[:] = [[[0.9,0,0], [0.9, 0, 0]],
[[0, 0.9, 0], [0, 0.9, 0.9]],

[[0.9, 0.9, 0], [0, 0, 0.9]]]
geometry.material.primitive_color_mix = 1.0

In [7]: fresnel.preview(scene, aa_level=3)

1.11. Cylinder 57

Fresnel Documentation, Release 0.6.0

1.11.3 Outlines

Outlines are applied on the outer edge of the cylinder in the view plane.

In [8]: geometry.outline_width = 0.05

In [9]: fresnel.preview(scene, aa_level=3)

58 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.12 Convex polyhedron

In [1]: import fresnel
import math
device = fresnel.Device()
scene = fresnel.Scene(device)

The convex polyhedron geometry defines a set of N convex polyhedra. The shape of all N polyhedra is identical
and defined by P planes. Each polyhedron has its own position, orientation, and color. You must also specify the
circumsphere radius r (fresnel currently doesn’t attempt to calculate this).

The planes of the polyhedron are given as a set of P origins and outward pointing normals. Construct a truncated cube:

In [2]: origins=[];
normals=[];
colors=[];

for v in [-1, 1]:
origins.append([v, 0, 0])
normals.append([v, 0, 0])
colors.append(fresnel.color.linear([0.70,0.87,0.54])*0.8)

origins.append([0, v, 0])
normals.append([0, v, 0])
colors.append(fresnel.color.linear([0.70,0.87,0.54])*0.8)

origins.append([0, 0, v])

1.12. Convex polyhedron 59

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

normals.append([0, 0, v])
colors.append(fresnel.color.linear([0.70,0.87,0.54])*0.8)

for x in [-1,1]:
for y in [-1,1]:

for z in [-1,1]:
normals.append([x,y,z])
origins.append([x*0.75, y*0.75, z*0.75])
colors.append(fresnel.color.linear([0.65,0.81,0.89])*0.8)

In [3]: geometry = fresnel.geometry.ConvexPolyhedron(scene,
N=3,
origins=origins,
normals=normals,
face_colors=fresnel.color.linear(colors),
r=math.sqrt(3)
)

geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
roughness=0.8)

1.12.1 Geometric properties

position defines the position of the center of each convex polyhedron.

In [4]: geometry.position[:] = [[-3,0,0], [0, 0, 0], [3, 0, 0]]

orientation sets the orientation of each convex polyhedron as a quaternion

In [5]: geometry.orientation[:] = [[1, 0, 0, 0],
[0.80777943, 0.41672122, 0.00255412, 0.41692838],
[0.0347298, 0.0801457, 0.98045, 0.176321]]

In [6]: scene.camera = fresnel.camera.fit(scene, view='front', margin=0.5)
fresnel.preview(scene, aa_level=3)

60 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.12.2 Color

color sets the color of each individual convex polyhedron (when primitive_color_mix > 0 and color_by_face < 1)

In [7]: geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0

In [8]: fresnel.preview(scene, aa_level=3)

1.12. Convex polyhedron 61

Fresnel Documentation, Release 0.6.0

set color_by_face > 0 to color the faces of the polyhedra independently. face_colors (set above) sets the color of each
face.

In [9]: geometry.color_by_face = 1.0

In [10]: fresnel.preview(scene, aa_level=3)

62 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.12.3 Outlines

Outlines are applied at the outer edge of each face.

In [11]: geometry.outline_width = 0.02

In [12]: fresnel.preview(scene, aa_level=3)

1.12. Convex polyhedron 63

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.13 Multiple geometries

A Scene may consist of more than one geometry object. For fast performance, try to condense the scene down to as
few geometries with as many primitives as possible. Multiple geometries allow for different materials to be applied to
the same type of geometry and for different types of geometry in the same scene.

In [1]: import fresnel
scene = fresnel.Scene()

1.13.1 Create multiple geometries

To create multiple geometries, instantiate several instances of the geometry class.

In [2]: geom1 = fresnel.geometry.Sphere(scene, position = [[-3.2, 1, 0], [-3.2, -1, 0], [-1.2, 1, 0], [-1.2, -1, 0]], radius=1.0)
geom1.material = fresnel.material.Material(solid=1.0, color=fresnel.color.linear([0.42,0.267,1]))
geom1.outline_width = 0.12

In [3]: geom2 = fresnel.geometry.Sphere(scene, position = [[3.2, 1, 0], [3.2, -1, 0], [1.2, 1, 0], [1.2, -1, 0]], radius=1.0)
geom2.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169]))

In [4]: fresnel.preview(scene, w=900, h=370, aa_level=3)

64 Chapter 1. Samples

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.13.2 Disable geometries

disable a geometry to prevent it from appearing in the scene.

In [5]: geom1.disable()

In [6]: fresnel.preview(scene, w=900, h=370, aa_level=3)

enable the geometry to make it appear again.

In [7]: geom1.enable()

In [8]: fresnel.preview(scene, w=900, h=370, aa_level=3)

1.13. Multiple geometries 65

Fresnel Documentation, Release 0.6.0

1.13.3 Remove geometry

Call remove to completely remove a geometry instance from the scene. It cannot be added back.

In [9]: geom2.remove()

In [10]: fresnel.preview(scene, w=900, h=370, aa_level=3)

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.14 Devices

Each Scene is attached to a specific Device. The Device controls what hardware the ray tracing executes on. Scene
implicitly creates a default Device when you do not specify one.

66 Chapter 1. Samples

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.14.1 The default device

The default device automatically selects GPU ray tracing if the gpu module is compiled and there is at least one gpu
present in the system - otherwise it selects CPU ray tracing.

In [1]: import fresnel
device = fresnel.Device()

1.14.2 Query available execution modes

The available_modes static variable lists which execution modes are available. This will vary based on compile
time options and whether there is a GPU present in the system.

In [2]: print(fresnel.Device.available_modes)

['gpu', 'cpu', 'auto']

available_gpus lists the GPUs available for rendering in the system.

In [3]: for g in fresnel.Device.available_gpus:
print(g)

[0]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM
[1]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM

1.14.3 Choose execution hardware

Explicitly manage a Device to control what hardware the ray tracing executes on. Converting the device to a string
provides a short summary of the device configuration.

In [4]: gpu = fresnel.Device(mode='gpu')
print(gpu)

<fresnel.Device: Enabled OptiX devices:
[0]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM
[1]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM

>

In [5]: cpu = fresnel.Device(mode='cpu')
print(cpu)

<fresnel.Device: All available CPU threads>

Set n to specify how many CPU threads or GPUs to use in parallel. By default, a device will use all available CPU
cores or GPUs in the system.

In [6]: cpu_limit = fresnel.Device(mode='cpu', n=6)
print(cpu_limit)

<fresnel.Device: 6 CPU threads>

1.14.4 Attach a scene to a device

Each Scene must be attached to a device when created.

In [7]: scene_gpu = fresnel.Scene(device=gpu)

In [8]: scene_cpu = fresnel.Scene(device=cpu)

These two scenes have the same API, but different implementations.

1.14. Devices 67

Fresnel Documentation, Release 0.6.0

In [9]: for scene in [scene_cpu, scene_gpu]:
geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)
geometry.position[:] = [[1,1,1],

[1,1,-1],
[1,-1,1],
[1,-1,-1],
[-1,1,1],
[-1,1,-1],
[-1,-1,1],
[-1,-1,-1]]

geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,1]))

Rendered output is essentially identical from the two devices.

In [10]: fresnel.preview(scene_gpu, w=300, h=300, aa_level=3)

In [11]: fresnel.preview(scene_cpu, w=300, h=300, aa_level=3)

68 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.14.5 Memory consumption

Each Device consumes memory by itself. When maintaining multiple scenes, attach them all to the same device to
reduce memory consumption.

In [12]: import math
scene2_gpu = fresnel.Scene(device=gpu)
position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene2_gpu, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0)

In [13]: fresnel.preview(scene2_gpu, w=300, h=300, aa_level=3)

1.14. Devices 69

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.15 Tracer methods

Most of the tutorials use fresnel.preview() and fresnel.pathtrace() to render output images. This is a convenience
API, and there are cases where it is not appropriate. To render many frames, such as in a movie or interactive visual-
ization, use a Tracer directly to avoid overhead.

In [1]: import fresnel
import math
from matplotlib import pyplot
%matplotlib inline
device = fresnel.Device()
scene = fresnel.Scene(device=device)
position = []
for i in range(6):

position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169])*0.9)
geometry.outline_width = 0.12
scene.camera = fresnel.camera.fit(scene, view='front', margin=0.2)

70 Chapter 1. Samples

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

1.15.1 Common Tracer operations

The Tracer must use the same device as the Scenes it renders. Each Tracer maintains an output image, and the width
w and height h must be defined when the tracer is created.

In [2]: tracer = fresnel.tracer.Preview(device=device, w=300, h=300, aa_level=3)

Rendering and accessing output images

The render method renders the output.

In [3]: out = tracer.render(scene)

The return value of render is a proxy reference to the internal image buffer of the Tracer. You can access with a
numpy array like interface.

In [4]: out[100,100]

Out[4]: array([139, 121, 21, 255], dtype=uint8)

The output object also provides an interface for jupyter to display the image.

In [5]: out

tracer.output also accesses the output buffer.

In [6]: tracer.output

1.15. Tracer methods 71

Fresnel Documentation, Release 0.6.0

The tracer can render a modified scene without the initialization overhead.

In [7]: scene.camera.up = (1,0,0)
tracer.render(scene);

After rendering, existing references to the output buffer will access the newly rendered image.

In [8]: out

72 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Evaluate image exposure

Tracer provides several methods to evaluate image exposure. Enable highlight warnings to flag overexposed pixels in
the output image.

In [9]: tracer.enable_highlight_warning()

The test image is exposed correctly, there are no warning pixels.

In [10]: tracer.render(scene)

1.15. Tracer methods 73

Fresnel Documentation, Release 0.6.0

Make the main light brighter to show the highlight warnings.

In [11]: scene.lights[0].color = (1.2, 1.2, 1.2)
tracer.render(scene)

74 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Tracer can also compute the image histogram to evaluate image exposure.

In [12]: L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');
pyplot.axis(ymax=400, ymin=0)

Out[12]: (-0.04794921875, 1.04990234375, 0, 400)

1.15. Tracer methods 75

Fresnel Documentation, Release 0.6.0

In [13]: tracer.disable_highlight_warning()

Resizing the output buffer

Call resize to set a new size for the output. When the image is resized, any existing rendered output is lost.

In [14]: tracer.resize(w=150, h=150)

In [15]: tracer.output

The next call to render will render into the new output size.

In [16]: tracer.render(scene)

76 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

1.15.2 The Preview tracer

The Preview tracer renders output images quickly with approximate lighting effects.

In [17]: tracer = fresnel.tracer.Preview(device=device, w=300, h=300)

The aa_level attribute controls the strength of the anti-aliasing.

In [18]: tracer.aa_level

Out[18]: 0

In [19]: tracer.render(scene)

In [20]: tracer.aa_level = 1

In [21]: tracer.render(scene)

1.15. Tracer methods 77

Fresnel Documentation, Release 0.6.0

In [22]: tracer.aa_level = 3

In [23]: tracer.render(scene)

78 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

A different random number seed will result in different jittered anti-aliasing samples.

In [24]: tracer.seed = 12
tracer.aa_level = 1

In [25]: tracer.render(scene)

Here is a different scene rendered with the Preview tracer:

In [28]: position = []
for k in range(5):

for i in range(5):
for j in range(5):

position.append([2*i, 2*j, 2*k])
scene = fresnel.Scene(device)
scene.lights[1].theta = math.pi

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.1,0.1,0.4]),

roughness=0.1,
specular=1.0)

In [29]: tracer.resize(w=450, h=450)
tracer.aa_level = 3
tracer.render(scene)

1.15. Tracer methods 79

Fresnel Documentation, Release 0.6.0

1.15.3 The Path tracer

The Path tracer supports soft lighting, reflections, and other lighting effects.

Here is the same scene with the path tracer:

In [30]: path_tracer = fresnel.tracer.Path(device=device, w=450, h=450)

In [31]: path_tracer.sample(scene, samples=64, light_samples=40)

80 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

The Path tracer performs many independent samples and averages them together. reset() starts averaging a new image.

In [32]: path_tracer.reset()

render() accumulates a single sample into the resulting image.

In [33]: path_tracer.render(scene)

1.15. Tracer methods 81

Fresnel Documentation, Release 0.6.0

The resulting image is noisy, average many samples together to obtain a clean image.

In [34]: for i in range(64):
path_tracer.render(scene)

path_tracer.output

82 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

This page was generated from a jupyter notebook. You can download and run the notebook locally from the fresnel-
examples repository.

1.16 fresnel

Overview

fresnel.Device Hardware device to use for ray tracing.
fresnel.Scene Content of the scene to ray trace.

1.16. fresnel 83

https://jupyter.org/
https://bitbucket.org/glotzer/fresnel-examples
https://bitbucket.org/glotzer/fresnel-examples

Fresnel Documentation, Release 0.6.0

Details

The fresnel ray tracing package.

fresnel.__version__
str – Fresnel version

class fresnel.Device(mode=’auto’, n=None)
Hardware device to use for ray tracing.

Parameters

• mode (str) – Specify execution mode: Valid values are auto, gpu, and cpu.

• n (int) – Specify the number of cpu threads / gpus this device will use. None sets no limit.

Device defines hardware device to use for ray tracing. Scene and tracer instances must be attached to a
Device. You may attach any number of scenes and tracers to a single Device.

When mode is auto, the default, Device GPU rendering and fall back on CPU rendering if there is no GPU
available or GPU support was not compiled in. Set mode to gpu or cpu to force a specific mode.

Important: By default (n==None), this device will use all available GPUs or CPU cores. Set n to the number
of GPUs or CPU cores this device should use. When selecting n GPUs, the device selects the first n in the
available_gpus list.

Tip: Use only a single Device to reduce memory consumption.

The static member available_modes lists which modes are available. For a mode to be available, the
corresponding module must be enabled at compile time. Additionally, there must be at least one GPU present
for the gpu mode to be available.

>>> fresnel.Device.available_modes
['gpu', 'cpu', 'auto']

available_modes
list – List of the available execution modes (static member).

available_gpus
list – List of the available gpus (static member).

mode
string – The active mode

class fresnel.Scene(device=None, camera=’auto’, lights=[<fresnel.light.Light object>, <fres-
nel.light.Light object>])

Content of the scene to ray trace.

Parameters device (Device) – Device to create this Scene on.

Scene defines the contents of the scene to be ray traced, including any number of geometry objects, the
camera, background color, background alpha, and the lights.

Every Scene attaches to a Device. For convenience, Scene creates a default Device when device is None.
If you want a non-default device, you must create it explicitly.

84 Chapter 1. Samples

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

Lights

lights is a sequence of up to 4 directional lights that apply to the scene globally. Each light has a direction
and color. You can assign lights using one of the predefined setups:

scene.lights = fresnel.light.butterfly()

You can assign a sequence of Light objects:

scene.lights = [fresnel.light.Light(direction=(1,2,3))]

You can modify the lights in place:

>>> print(len(scene.lights))
2
>>> l.append(fresnel.light.Light(direction=(1,0,0), color=(1,1,1)))
>>> print(len(3))
1
>>> print(l[2]).direction
(1,0,0)
>>> l[0].direction = (-1,0,0)
>>> print(l[0]).direction
(-1,0,0)

device
Device – Device this Scene is attached to.

camera
camera.Camera – Camera view parameters, or ‘auto’ to automatically choose a camera.

background_color
tuple[float] – Background color (r,g,b) as a tuple or other 3-length python object, in the linearized color
space. Use fresnel.color.linear() to convert standard sRGB colors

background_alpha
float – Background alpha (opacity).

lights
list of light.Light – Globals lights in the scene.

get_extents()
Get the extents of the scene

Returns

[[minimum x, minimum y, minimum z], [maximum x, maximum y, maximum z]]

fresnel.pathtrace(scene, w=600, h=370, samples=64, light_samples=1)
Path trace a scene.

Parameters

• scene (Scene) – Scene to render.

• w (int) – Output image width.

• h (int) – Output image height.

• samples (int) – Number of times to sample the pixels of the scene.

• light_samples (int) – Number of light samples to take for each pixel sample.

1.16. fresnel 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

pathtrace() is a shortcut to rendering output with the Path tracer. See the Path tracer for a complete
description.

fresnel.preview(scene, w=600, h=370, aa_level=0)
Preview a scene.

Parameters

• scene (Scene) – Scene to render.

• w (int) – Output image width.

• h (int) – Output image height.

• aa_level (int) – Amount of anti-aliasing to perform

preview() is a shortcut to rendering output with the Preview tracer. See the Preview tracer for a com-
plete description.

Modules

1.16.1 fresnel.camera

Overview

fresnel.camera.Camera
fresnel.camera.fit
fresnel.camera.orthographic

Details

Cameras.

class fresnel.camera.Camera(_camera=None)
Defines the view into the Scene.

Use one of the creation functions to create a Camera:

• orthographic()

The camera is a property of the Scene. You may read and modify any of these camera attributes.

position
tuple – the position of the camera (the center of projection).

look_at
tuple – the point the camera looks at (the center of the focal plane).

up
tuple – a vector pointing up.

height
the height of the image plane.

Camera space is a coordinate system centered on the camera’s position. Positive x points to the right in the
image, positive y points up, and positive z points out of the screen. Camera space shares units with Scene
space.

TODO: Move description of spaces to an overview page and create figures.

86 Chapter 1. Samples

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

fresnel.camera.fit(scene, view=’auto’, margin=0.05)
Fit a camera to a Scene

Create a camera that fits the entire hight of the scene in the image plane.

Parameters

• scene (Scene) – The scene to fit the camera to.

• view (str) – Select view

• margin (float) – Fraction of extra space to leave on the top and bottom of the scene.

view may be ‘auto’, ‘isometric’, or ‘front’.

The isometric view is an orthographic projection from a particular angle so that the x,y, and z directions are
equal lengths. The front view is an orthographic projection where +x points to the right, +y points up and +z
points out of the screen in the image plane. ‘auto’ automatically selects ‘isometric’ for 3D scenes and ‘front’ for
2D scenes.

fresnel.camera.orthographic(position, look_at, up, height)
Orthographic camera

Parameters

• position (tuple) – the position of the camera.

• look_at (tuple) – the point the camera looks at (the center of the focal plane).

• up (tuple) – a vector pointing up.

• height – the height of the image plane.

An orthographic camera traces parallel rays from the image plane into the scene. Lines that are parallel in the
Scene will remain parallel in the rendered image.

position is the center of the image plane in Scene space. look_at is the point in Scene space that will be in
the center of the image. Together, these vectors define the image plane which is perpendicular to the line from
position to look_at. Objects in front of the plane will appear in the rendered image, objects behind the plane
will not.

up is a vector in Scene space that defines which direction points up (+y direction in the image). up does not
need to be perpendicular to the line from position to look_at, but it must not be parallel to that line. height sets
the height of the image in Scene units. The image width is determined by the aspect ratio of the image. The
area width by height about the look_at point will be included in the rendered image.

TODO: show a figure

1.16.2 fresnel.color

Overview

fresnel.color.linear Convert a sRGB color (or array of such colors) from the
gamma corrected color space into the linear space.

Details

Color utilities.

fresnel.color.linear(color)

1.16. fresnel 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Fresnel Documentation, Release 0.6.0

Convert a sRGB color (or array of such colors) from the gamma corrected color space into the linear space.

Standard tools for working with RGB colors provide gamma corrected values. fresnel needs to perform cal-
culations in a linear color space. This method converts a sRGB into that linear space. Use linear() when
specifying material or particle colors with sRGB inputs.

linear() accepts RGBA input (such as from matplotlib’s to_rgba colormap method), but ignores the alpha
channel and outputs an Nx3 array.

Parameters color (tuple) – 3-length (or Nx3, or Nx4) list, or other object convertible to a
numpy array (in the range 0-1).

Returns A numpy array with the linearized color.

1.16.3 fresnel.geometry

Overview

fresnel.geometry.Geometry Base class for all geometry.
fresnel.geometry.Cylinder Cylinder geometry.
fresnel.geometry.ConvexPolyhedron Convex polyhedron geometry.
fresnel.geometry.Sphere Sphere geometry.

Details

Geometric primitives.

class fresnel.geometry.ConvexPolyhedron(scene, origins, normals, r, face_colors=None,
position=None, orientation=None,
color=None, N=None, mate-
rial=<fresnel.material.Material object>, out-
line_material=<fresnel.material.Material object>,
outline_width=0.0)

Convex polyhedron geometry.

Define a set of convex polyhedron primitives. A convex polyhedron is defined by P outward facing planes
(origin and normal vector) and a radius that encompass the shape.

Note: Future versions may (or may not) provide a more user friendly interface.

Parameters

• scene (fresnel.Scene) – Add the geometry to this scene

• origins – Origins of the planes in particle local coordinates. Type: anything convertible
by numpy to a Px3 array of floats.

• normals – Origins of the planes in particle local coordinates. Type: anything convertible
by numpy to a Px3 array of floats.

• r (float) – Radius of the circumscribing sphere (centered at the origin) that encompasses
the polyhedron.

• face_colors – Colors of the polyhedron faces Type: anything convertible by numpy to
a Px3 array of floats.

• position – Positions of the polyhedra, optional. Type: anything convertible by numpy
to a Nx3 array of floats.

88 Chapter 1. Samples

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.6.0

• orientation – Rotation quaternion of each polyhedron, optional. Type: anything con-
vertible by numpy to a Nx4 array of floats.

• color – (r,g,b) color of each particle, optional. Type: anything convertible by numpy to a
Nx3 array of floats.

• N (int) – Number of spheres in the geometry. If None, determine N from position.

Note: The constructor arguments position, orientation, and color are optional, and just short-hand
for assigning the attribute after construction.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB
colors into this space.

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate numpy array type.

position
fresnel.util.array – Read or modify the positions of the prisms.

orientation
fresnel.util.array – Read or modify the orientations of the prisms.

color
fresnel.util.array – Read or modify the color of the prisms.

color_by_face
float – Set to 0 to color particles by the per-particle color. Set to 1 to color faces by the per-face color.

get_extents()
Get the extents of the geometry

Returns

[[minimum x, minimum y, minimum z], [maximum x, maximum y, maximum z]]

class fresnel.geometry.Cylinder(scene, points=None, radius=None, color=None, N=None,
material=<fresnel.material.Material object>, out-
line_material=<fresnel.material.Material object>, out-
line_width=0.0)

Cylinder geometry.

Define a set of cylinder primitives with start and end positions, radii, and individual colors.

Parameters

• scene (fresnel.Scene) – Add the geometry to this scene

• points – cylinder start and end points, optional. Type: anything convertible by numpy to
a Nx2x3 array of floats.

• radius – Radius of each cylinder, optional. Type: anything convertible by numpy to a N
length array of floats.

• color – (r,g,b) color of each particle, optional. Type: anything convertible by numpy to a
Nx2x3 array of floats.

• N (int) – Number of cylinders in the geometry. If None, determine N from position.

1.16. fresnel 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

Note: The constructor arguments points, radius, and color are optional, and just short-hand for assign-
ing the properties after construction.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB
colors into this space.

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate numpy array type.

points
fresnel.util.array – Read or modify the start and end points of the cylinders.

radius
fresnel.util.array – Read or modify the radii of the cylinders.

color
fresnel.util.array – Read or modify the colors of the start and end points of the cylinders.

get_extents()
Get the extents of the geometry

Returns

[[minimum x, minimum y, minimum z], [maximum x, maximum y, maximum z]]

class fresnel.geometry.Geometry
Base class for all geometry.

Geometry provides operations common to all geometry classes.

material
fresnel.material.Material – Read, set, or modify the geometry’s material.

outline_material
fresnel.material.Material – Read, set, or modify the geometry’s outline material.

outline_width
float – The geometry’s outline width, in distance units in the scene’s coordinate system.

Note: You cannot instantiate a Geometry directly. Use one of the sub classes.

disable()
Disable the geometry.

When disabled, the geometry will not be present in the scene. No rays will intersect it.

enable()
Enable the geometry.

When enabled, the geometry will be present when rendering the scene.

remove()
Remove the geometry from the scene.

After calling remove, the geometry is no longer part of the scene. It cannot be added back into the scene.
Use disable() if you want a reversible operation.

90 Chapter 1. Samples

https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.6.0

class fresnel.geometry.Prism(scene, vertices, position=None, angle=None, height=None,
color=None, N=None, material=<fresnel.material.Material ob-
ject>, outline_material=<fresnel.material.Material object>, out-
line_width=0.0)

Prism geometry.

Define a set of right convex prism primitives. The bottom polygon face is always in the xy plane. Each prism
may have a different height and rotation angle.

Parameters

• scene (fresnel.Scene) – Add the geometry to this scene

• vertices – The vertices of the polygon in a counter clockwise winding direction. Type:
anything convertible by numpy to a Nx2 array of floats.

• position – Positions of the prisms, optional. Type: anything convertible by numpy to a
Nx3 array of floats.

• height – Height of each prism in the z direction, optional. Type: anything convertible by
numpy to a N length array of floats.

• angle – Rotation angle of each prism (in radians), optional. Type: anything convertible
by numpy to a N length array of floats.

• color – (r,g,b) color of each particle, optional. Type: anything convertible by numpy to a
Nx3 array of floats.

• N (int) – Number of spheres in the geometry. If None, determine N from position.

Note: The constructor arguments position, height, angle, and color are optional, and just short-hand
for assigning the attribute after construction.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB
colors into this space.

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate numpy array type.

position
fresnel.util.array – Read or modify the positions of the prisms.

height
fresnel.util.array – Read or modify the heights of the prisms.

angle
fresnel.util.array – Read or modify the angles of the prisms.

color
fresnel.util.array – Read or modify the color of the prisms.

class fresnel.geometry.Sphere(scene, position=None, radius=None, color=None,
N=None, material=<fresnel.material.Material object>,
outline_material=<fresnel.material.Material object>, out-
line_width=0.0)

Sphere geometry.

Define a set of sphere primitives with positions, radii, and individual colors.

Parameters

1.16. fresnel 91

https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

• scene (fresnel.Scene) – Add the geometry to this scene

• position – Positions of the spheres, optional. Type: anything convertible by numpy to a
Nx3 array of floats.

• radius – Radius of each sphere, optional. Type: anything convertible by numpy to a N
length array of floats.

• color – (r,g,b) color of each particle, optional. Type: anything convertible by numpy to a
Nx3 array of floats.

• N (int) – Number of spheres in the geometry. If None, determine N from position.

Note: The constructor arguments position, radius, and color are optional, and just short-hand for
assigning the properties after construction.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB
colors into this space.

Hint: Avoid costly memory allocations and type conversions by specifying primitive properties in the appro-
priate numpy array type.

position
fresnel.util.array – Read or modify the positions of the spheres.

radius
fresnel.util.array – Read or modify the radii of the spheres.

color
fresnel.util.array – Read or modify the color of the spheres.

get_extents()
Get the extents of the geometry

Returns

[[minimum x, minimum y, minimum z], [maximum x, maximum y, maximum z]]

1.16.4 fresnel.light

Overview

fresnel.light.Light Define a single light
fresnel.light.butterfly Create a butterfly lighting setup.
fresnel.light.cloudy Create a cloudy day lighting setup.
fresnel.light.lightbox Create a light box lighting setup.
fresnel.light.loop Create a loop lighting setup.
fresnel.light.rembrandt Create a Rembrandt lighting setup.
fresnel.light.ring Create a ring lighting setup.

Details

Lights.

92 Chapter 1. Samples

https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

class fresnel.light.Light(direction, color=(1, 1, 1), theta=0.375)
Define a single light

Parameters

• direction – A 3-tuple that defines the direction the light points in camera space.

• color – A 3-tuple that defines the color and intensity of the light as a linear sRGB value
(see fresnel.color.linear())

• theta (float) – Half angle of the cone that defines the area of the light (in radians)

The direction vector may have any non-zero length, but only the direction the vector points matters.

The color also sets the light intensity. A (0.5, 0.5, 0.5) light is twice as bright as (0.25, 0.25, 0.25).

fresnel.light.butterfly()
Create a butterfly lighting setup.

The butterfly portrait lighting setup is front lighting with the key light (index 0) placed high above the camera
and the fill light (index 1) below the camera.

Returns A list of lights.

fresnel.light.cloudy()
Create a cloudy day lighting setup.

The cloudy lighting setup mimics a cloudy day. A strong light comes from all directions above. A weaker
light comes from all directions below (accounting for light “reflected” off the ground). Use path tracing for best
results with this setup.

Returns A list of lights.

fresnel.light.lightbox()
Create a light box lighting setup.

The light box lighting setup places a single massive area light that covers the top, bottom, left, and right. Use
path tracing for best results with this setup.

Returns A list of lights.

fresnel.light.loop(side=’right’)
Create a loop lighting setup.

The loop portrait lighting setup places the key light slightly to one side of the camera and slightly up (index 0).
The fill light is on the other side of the camera at the level of the camera (index 1).

Parameters side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

Returns A list of lights.

fresnel.light.rembrandt(side=’right’)
Create a Rembrandt lighting setup.

The Rembrandt portrait lighting setup places the key light 45 degrees to one side of the camera and slightly up
(index 0). The fill light is on the other side of the camera at the level of the camera (index 1).

Parameters side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

Returns A list of lights.

fresnel.light.ring()
Create a ring lighting setup.

The ring lighting setup provides a strong front area light. This type of lighting is common in fashion photogra-
phy. Use path tracing for best results with this setup.

1.16. fresnel 93

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Fresnel Documentation, Release 0.6.0

Returns A list of lights.

1.16.5 fresnel.material

Overview

fresnel.material.Material Define material properties.

Details

Materials describe the way light interacts with surfaces.

class fresnel.material.Material(solid=0, color=(0, 0, 0), primitive_color_mix=0, rough-
ness=0.3, specular=0.5, spec_trans=0, metal=0)

Define material properties.

Parameters

• solid (float) – Set to 1 to pass through a solid color, regardless of the light and view
angle.

• color (tuple) – The linear RGB color of the material as a 3-tuple, list or other iterable.

• primitive_color_mix (float) – Set to 1 to use the color provided in the Geometry,
0 to use the color specified in the material, or a value in the range [0,1] to mix the two colors.

• roughness (float) – Roughness of the material. Nominally in the range [0,1], though
0.1 is a realistic minimum.

• specular (float) – Control the strength of the specular highlights. Nominally in the
range [0,1].

• spec_trans (float) – Control the amount of specular light transmission. In the range
[0,1].

• metal (float) – Set to 0 for dielectric material, or 1 for metal. Intermediate values
interpolate between the two.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB
colors into this space.

1.16.6 fresnel.tracer

Overview

fresnel.tracer.Path Path tracer.
fresnel.tracer.Preview Preview ray tracer.
fresnel.tracer.Tracer Base class for all ray tracers.

Details

Ray tracers.

class fresnel.tracer.Path(device, w, h)

94 Chapter 1. Samples

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Fresnel Documentation, Release 0.6.0

Path tracer.

Parameters

• device (Device) – Device to use for rendering.

• w (int) – Output image width.

• h (int) – Output image height.

The path tracer applies advanced lighting effects, including soft shadows, reflections, etc. . . . It operates by
Monte Carlo sampling. Each call to render() performs one sample per pixel. The output image is the mean
of all the samples. Many samples are required to produce a smooth image.

sample() provides a convenience API to make many samples with a single call.

reset()
Clear the output buffer and start sampling a new image. Increment the random number seed so that the
new image is statistically independent from the previous.

sample(scene, samples, reset=True, light_samples=1)

Parameters

• scene (Scene) – The scene to render.

• samples (int) – The number of samples to take per pixel.

• reset (bool) – When True, call reset() before sampling

Returns A reference to the current output buffer as a fresnel.util.image_array .

Note: When reset is False, subsequent calls to sample() will continue to add samples to the current
output image. Use the same number of light samples when sampling an image in this way.

class fresnel.tracer.Preview(device, w, h, aa_level=0)
Preview ray tracer.

Parameters

• device (Device) – Device to use for rendering.

• w (int) – Output image width.

• h (int) – Output image height.

• aa_level (int) – Amount of anti-aliasing to perform

aa_level
int – Amount of anti-aliasing to perform

Overview

The Preview tracer produces a preview of the scene quickly. It approximates the effect of light on materials.
The output of the Preview tracer will look very similar to that from the Path tracer, but will miss soft
shadows, reflection, transmittance, and other lighting effects.

TODO: show examples

1.16. fresnel 95

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

Anti-aliasing

Set aa_level to control the amount of anti-aliasing performed. The default value of 0 performs no anti-
aliasing to enable the fastest possible preview renders. A value of 1 samples 2x2 subpixels, a value of 2 samples
4x4 subpixels, a value of 3 samples 8x8 subpixels, etc . . . Samples are jittered with random numbers. Different
seed values will result in different output images.

TODO: show examples

Tip: Use aa_level = 3 when using the Preview tracer to render production quality output.

class fresnel.tracer.Tracer
Base class for all ray tracers.

Tracer provides operations common to all ray tracer classes.

Each Tracer instance stores a pixel output buffer. When you render() a Scene, the current data stored in
the buffer is overwritten with the new image.

Note: You cannot instantiate a Tracer directly. Use one of the sub classes.

output
fresnel.util.image_array – Reference to the current output buffer (modified by render())

linear_output
fresnel.util.array – Reference to the current output buffer in linear color space (modified by
render())

seed
int – Random number seed.

disable_highlight_warning()
Disable the highlight clipping warnings.

enable_highlight_warning(color=(1, 0, 1))
Enable highlight clipping warnings.

When a pixel in the rendered image is too bright to represent, make that pixel the given color to flag the
problem to the user.

Parameters color (tuple) – Color to make the highlight warnings.

histogram()
Compute a histogram of the image.

The histogram is computed as a lightness in the sRGB color space. The histogram is computed only over
the visible pixels in the image, fully transparent pixels are ignored. The returned histogram is nbins x 4,
the first column contains the lightness histogram and the next 3 contain R,B, and G channel histograms
respectively.

Returns (histogram, bin_positions).

render(scene)
Render a scene.

Parameters scene (Scene) – The scene to render.

Returns A reference to the current output buffer as a fresnel.util.image_array .

Render the given scene and write the resulting pixels into the output buffer.

96 Chapter 1. Samples

https://docs.python.org/3/library/stdtypes.html#tuple

Fresnel Documentation, Release 0.6.0

resize(w, h)
Resize the output buffer.

Parameters

• w (int) – New output buffer width.

• h (int) – New output buffer height.

Warning: resize() clears any existing image in the output buffer.

1.16.7 fresnel.util

Overview

fresnel.util.array Map internal fresnel buffers as numpy arrays.
fresnel.util.image_array Map internal fresnel image buffers as numpy arrays.

Details

Utility classes and methods.

class fresnel.util.array(buf, geom)
Map internal fresnel buffers as numpy arrays.

fresnel.util.array provides a python interface to access internal data of memory buffers stored and
managed by fresnel. These buffers may exist on the CPU or GPU depending on the device configuration, so
fresnel.util.array only allows certain operations: read/write of array data, and read-only querying of
array properties.

You can access a fresnel.util.array as if it were a numpy array (with limited operations).

Write to an array with array[slice] = v where v is a numpy array or anything that numpy can convert to
an array. When v is a contiguous numpy array of the appropriate data type, the data is copied directly from v
into the internal buffer.

Read from an array with v = array[slice]. This returns a copy of the data as a numpy array because the
array references internal data structures in fresnel that may exist on the GPU.

shape
tuple – Dimensions of the array.

dtype
Numpy data type

class fresnel.util.image_array(buf, geom)
Map internal fresnel image buffers as numpy arrays.

Inherits from array and provides all of its functionality, plus some additional convenience methods specific to
working with images. Images are represented as WxHx4 numpy arrays of unsigned chars in RGBA format.

Specifically, when a image_array is the result of an image in a Jupyter notebook cell, Jupyter will display
the image.

1.16. fresnel 97

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Fresnel Documentation, Release 0.6.0

1.17 License

Fresnel Open Source Software License Copyright (c) 2016-2018 The Regents of
the University of Michigan All rights reserved.

Fresnel may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.18 Credits

1.18.1 Fresnel Developers

Joshua A. Anderson, University of Michigan - Lead developer

Vyas Ramasubramani, University of Michigan

• Sphere geometry (GPU)

• Review and discussions on API and design.

Bryan Vansaders, University of Michigan

• Sphere geometry (CPU)

• Review and discussions on API and design.

1.18.2 Libraries

Fresnel links to the following libraries:

98 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

Python

Python is used under the Python license (http://www.python.org/psf/license/).

Embree

Embree is used under the Apache License, 2.0:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions

(continues on next page)

1.18. Credits 99

http://www.python.org/psf/license/
https://embree.github.io/

Fresnel Documentation, Release 0.6.0

(continued from previous page)

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
(continues on next page)

100 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

(continued from previous page)

distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

(continues on next page)

1.18. Credits 101

Fresnel Documentation, Release 0.6.0

(continued from previous page)

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

pybind11

pybind11 is used under the BSD 3-clause license:

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

(continues on next page)

102 Chapter 1. Samples

https://github.com/pybind/pybind11/

Fresnel Documentation, Release 0.6.0

(continued from previous page)

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

OptiX SDK

Portions of the OptiX SDK are used under the following license:

Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of NVIDIA CORPORATION nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.18. Credits 103

Fresnel Documentation, Release 0.6.0

Random123

Random123 is used to generate random numbers and is used under the following license:

Copyright 2010-2012, D. E. Shaw Research.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of D. E. Shaw Research nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Intel TBB

Intel’s threaded building blocks library provides support for parallel execution on CPUS and is used under the follow-
ing license:

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,

(continues on next page)

104 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

(continued from previous page)

"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,

(continues on next page)

1.18. Credits 105

Fresnel Documentation, Release 0.6.0

(continued from previous page)

worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work

(continues on next page)

106 Chapter 1. Samples

Fresnel Documentation, Release 0.6.0

(continued from previous page)

by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

(continues on next page)

1.18. Credits 107

Fresnel Documentation, Release 0.6.0

(continued from previous page)

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.19 Index

• genindex

• modindex

108 Chapter 1. Samples

Python Module Index

f
fresnel, 84
fresnel.camera, 86
fresnel.color, 87
fresnel.geometry, 88
fresnel.light, 92
fresnel.material, 94
fresnel.tracer, 94
fresnel.util, 97

109

Fresnel Documentation, Release 0.6.0

110 Python Module Index

Index

Symbols
__version__ (in module fresnel), 84

A
aa_level (fresnel.tracer.Preview attribute), 95
angle (fresnel.geometry.Prism attribute), 91
array (class in fresnel.util), 97
available_gpus (fresnel.Device attribute), 84
available_modes (fresnel.Device attribute), 84

B
background_alpha (fresnel.Scene attribute), 85
background_color (fresnel.Scene attribute), 85
butterfly() (in module fresnel.light), 93

C
Camera (class in fresnel.camera), 86
camera (fresnel.Scene attribute), 85
cloudy() (in module fresnel.light), 93
color (fresnel.geometry.ConvexPolyhedron attribute), 89
color (fresnel.geometry.Cylinder attribute), 90
color (fresnel.geometry.Prism attribute), 91
color (fresnel.geometry.Sphere attribute), 92
color_by_face (fresnel.geometry.ConvexPolyhedron at-

tribute), 89
ConvexPolyhedron (class in fresnel.geometry), 88
Cylinder (class in fresnel.geometry), 89

D
Device (class in fresnel), 84
device (fresnel.Scene attribute), 85
disable() (fresnel.geometry.Geometry method), 90
disable_highlight_warning() (fresnel.tracer.Tracer

method), 96
dtype (fresnel.util.array attribute), 97

E
enable() (fresnel.geometry.Geometry method), 90

enable_highlight_warning() (fresnel.tracer.Tracer
method), 96

F
fit() (in module fresnel.camera), 86
fresnel (module), 84
fresnel.camera (module), 86
fresnel.color (module), 87
fresnel.geometry (module), 88
fresnel.light (module), 92
fresnel.material (module), 94
fresnel.tracer (module), 94
fresnel.util (module), 97

G
Geometry (class in fresnel.geometry), 90
get_extents() (fresnel.geometry.ConvexPolyhedron

method), 89
get_extents() (fresnel.geometry.Cylinder method), 90
get_extents() (fresnel.geometry.Sphere method), 92
get_extents() (fresnel.Scene method), 85

H
height (fresnel.camera.Camera attribute), 86
height (fresnel.geometry.Prism attribute), 91
histogram() (fresnel.tracer.Tracer method), 96

I
image_array (class in fresnel.util), 97

L
Light (class in fresnel.light), 92
lightbox() (in module fresnel.light), 93
lights (fresnel.Scene attribute), 85
linear() (in module fresnel.color), 87
linear_output (fresnel.tracer.Tracer attribute), 96
look_at (fresnel.camera.Camera attribute), 86
loop() (in module fresnel.light), 93

111

Fresnel Documentation, Release 0.6.0

M
Material (class in fresnel.material), 94
material (fresnel.geometry.Geometry attribute), 90
mode (fresnel.Device attribute), 84

O
orientation (fresnel.geometry.ConvexPolyhedron at-

tribute), 89
orthographic() (in module fresnel.camera), 87
outline_material (fresnel.geometry.Geometry attribute),

90
outline_width (fresnel.geometry.Geometry attribute), 90
output (fresnel.tracer.Tracer attribute), 96

P
Path (class in fresnel.tracer), 94
pathtrace() (in module fresnel), 85
points (fresnel.geometry.Cylinder attribute), 90
position (fresnel.camera.Camera attribute), 86
position (fresnel.geometry.ConvexPolyhedron attribute),

89
position (fresnel.geometry.Prism attribute), 91
position (fresnel.geometry.Sphere attribute), 92
Preview (class in fresnel.tracer), 95
preview() (in module fresnel), 86
Prism (class in fresnel.geometry), 90

R
radius (fresnel.geometry.Cylinder attribute), 90
radius (fresnel.geometry.Sphere attribute), 92
rembrandt() (in module fresnel.light), 93
remove() (fresnel.geometry.Geometry method), 90
render() (fresnel.tracer.Tracer method), 96
reset() (fresnel.tracer.Path method), 95
resize() (fresnel.tracer.Tracer method), 97
ring() (in module fresnel.light), 93

S
sample() (fresnel.tracer.Path method), 95
Scene (class in fresnel), 84
seed (fresnel.tracer.Tracer attribute), 96
shape (fresnel.util.array attribute), 97
Sphere (class in fresnel.geometry), 91

T
Tracer (class in fresnel.tracer), 96

U
up (fresnel.camera.Camera attribute), 86

112 Index

	Samples
	Python Module Index

