

Fresnel

fresnel is a python library for path tracing publication quality images of soft matter simulations in real time.
The fastest render performance is possible on NVIDIA GPUs using their OptiX [https://developer.nvidia.com/optix]
ray tracing engine. fresnel also supports multi-core CPUs using Intel’s Embree [https://embree.github.io/]
ray tracing kernels. Path tracing enables high quality global illumination and advanced rendering effects.
Fresnel offers intuitive material parameters (like roughness, specular, and metal) and simple predefined
lighting setups (like cloudy and lightbox).

Here are a few samples of what fresnel can do:

[image: Protomer]
[image: Cuboids]
[image: Spheres]

Examples

	Gallery

	Research

	Features

Getting started

	Installation

	Change log

	User community

Basic tutorials

	Introduction

	Primitive properties

	Material properties

	Outline materials

	Scene properties

	Lighting setups

Primitives

	Sphere

	Cylinder

	Convex polyhedron

	Mesh

	Polygon

Advanced topics

	Multiple geometries

	Devices

	Tracer methods

	Interactive scene view

	Rendering images in matplotlib

Python API Reference

	fresnel
	fresnel.camera

	fresnel.color

	fresnel.geometry

	fresnel.interact

	fresnel.light

	fresnel.material

	fresnel.tracer

	fresnel.util

Additional information

	License

	Credits

	Index

Gallery

[image: Protomer]
[image: Cuboids]
[image: Spheres]

Research

	Protomer

Features

	Cuboids

	Spheres

Protomer

[image: Protomer]
Protomer on the cover of nature chemistry volume 11, issue 3 [https://www.nature.com/nchem/volumes/11/issues/3]:

	Ribbon geometry: geometry.Mesh

	material: roughness = 1.0, specular = 1.0, metal = 0, spec_trans = 0

	Generated with: ribbon [https://github.com/fogleman/ribbon]

	Molecular surface: geometry.Mesh

	material: roughness = 2.0, specular = 0.95, metal = 0, spec_trans = 0.95

	Generated with MSMS [https://mgl.scripps.edu/people/sanner/html/msms_home.html]

	Lighting: light.lightbox with background light

	Rendered with: tracer.Path: samples = 64, light_samples = 32 on the GPU

Author

Jens Glaser

Cuboids

[image: Cuboids]
Cuboid example script:

	Geometry: geometry.ConvexPolyhedron: outline_width = 0.015

	material: roughness = 0.1, specular = 1, metal = 0, spec_trans = 0

	outline_material: roughness = 0.1, metal = 1, spec_trans = 0, color = (0.95,0.93,0.88)

	position, orientation: output of a HOOMD [http://glotzerlab.engin.umich.edu/hoomd-blue/] simulation

	Lighting: light.lightbox

	Rendered with: tracer.Path: samples = 256, light_samples = 16

Source code

data = numpy.load('cuboids.npz')

scene = fresnel.Scene(fresnel.Device(mode='cpu'))
scene.lights = fresnel.light.lightbox()
W,H,D = data['width']
poly_info = fresnel.util.convex_polyhedron_from_vertices(
 [[-W,-H,-D], [-W,-H, D], [-W, H,-D], [-W, H, D],
 [W,-H,-D], [W,-H, D], [W, H,-D], [W, H, D]])

geometry = fresnel.geometry.ConvexPolyhedron(
 scene, poly_info,
 position = data['position'],
 orientation = data['orientation'],
 outline_width = 0.015)
geometry.material = fresnel.material.Material(
 color = fresnel.color.linear([0.1, 0.1, 0.6]),
 roughness = 0.1,
 specular = 1)
geometry.outline_material = fresnel.material.Material(
 color = (0.95,0.93,0.88),
 roughness = 0.1,
 metal = 1.0)

scene.camera = fresnel.camera.fit(scene, view='front')
out = fresnel.pathtrace(scene, samples=64,
 light_samples=32,
 w=580, h=580)

Author

Joshua A. Anderson

Spheres

[image: Spheres]
Spheres example script:

	Geometry: geometry.Sphere: radius = 0.5, outline_width = 0.1

	material: roughness = 0.8, specular = 0.2, metal = 0, spec_trans = 0

	outline_material: solid = 1, color = (0,0,0)

	positions: output of a HOOMD [http://glotzerlab.engin.umich.edu/hoomd-blue/] simulation

	Lighting: light.cloudy

	Rendered with: tracer.Path: samples = 256, light_samples = 16

Source code

data = numpy.load('spheres.npz')

scene = fresnel.Scene()
scene.lights = fresnel.light.cloudy()

geometry = fresnel.geometry.Sphere(
 scene,
 position = data['position'],
 radius = 0.5,
 outline_width = 0.1)

geometry.material = fresnel.material.Material(
 color = fresnel.color.linear([0.1, 0.8, 0.1]),
 roughness = 0.8,
 specular = 0.2)

out = fresnel.pathtrace(scene, samples=64,
 light_samples=32,
 w=580, h=580)

Author

Joshua A. Anderson

Installation

Fresnel binaries are available in the glotzerlab-software [https://glotzerlab-software.readthedocs.io]
Docker [https://hub.docker.com/]/Singularity [https://www.sylabs.io/] images and in packages on
conda-forge [https://conda-forge.org/]. You can also compile fresnel from source.

Anaconda package

Fresnel is available on conda-forge [https://conda-forge.org/]. To install, first download and install
miniconda [http://conda.pydata.org/miniconda.html].
Then add the conda-forge channel and install fresnel:

$ conda config --add channels conda-forge
$ conda install fresnel

jupyter and matplotlib are required to execute the
fresnel example notebooks [https://github.com/glotzerlab/fresnel-examples], install

$ conda install jupyter matplotlib

You can update fresnel with:

$ conda update fresnel

Note

The fresnel package on conda-forge does not include GPU support.

Docker images

Pull the glotzerlab-software [https://glotzerlab-software.readthedocs.io] image to get
fresnel along with many other tools commonly used in simulation and analysis workflows. See full usage information in the
glotzerlab-software documentation [https://glotzerlab-software.readthedocs.io].

Singularity:

$ singularity pull shub://glotzerlab/software

Docker:

$ docker pull glotzerlab/software

Compile from source

Download source releases directly from the web: https://glotzerlab.engin.umich.edu/Downloads/fresnel

$ curl -O https://glotzerlab.engin.umich.edu/Downloads/fresnel/fresnel-v0.9.0.tar.gz

Or, clone using git:

$ git clone --recursive https://github.com/glotzerlab/fresnel

Fresnel uses git submodules. Either clone with the --recursive option, or execute git submodule update --init
to fetch the submodules.

Prerequisites

	C++11 capable compiler

	CMake >= 2.8

	Python >= 2.7

	For CPU execution (required when ENABLE_EMBREE=ON):

	Intel TBB >= 4.3.20150611

	Intel Embree >= 3.0.0

	For GPU execution (required when ENABLE_OPTIX=ON):

	OptiX >= 4.0

	CUDA >= 7.5

	To enable interactive widgets:

	pyside2

	To execute tests (optional):

	pytest

	pillow

ENABLE_EMBREE (defaults ON) and ENABLE_OPTIX (defaults OFF) are orthogonal settings, either or both may be
enabled.

Optional dependencies

	pytest

	Required to execute unit tests.

	pillow

	Required to display rendered output in Jupyter notebooks automatically.

	sphinx

	Required to build the user documentation.

	doxygen

	Requited to build developer documentation.

Compile

Configure with cmake and compile with make. Replace ${PREFIX} your desired installation location.

$ mkdir build
$ cd build
$ cmake ../ -DCMAKE_INSTALL_PREFIX=${PREFIX}/lib/python
$ make install -j10

By default, fresnel builds the Embree (CPU) backend. Pass -DENABLE_OPTIX=ON to cmake to enable the GPU
accelerated OptiX backend.

Add ${PREFIX}/lib/python to your PYTHONPATH to use fresnel.

$ export PYTHONPATH=$PYTHONPATH:${PREFIX}/lib/python

Run tests

Fresnel has extensive unit tests to verify correct execution.

$ export PYTHONPATH=/path/to/build
$ cd /path/to/fresnel
$ cd test
$ pytest

Build user documentation

Build the user documentation with sphinx:

$ cd /path/to/fresnel
$ cd doc
$ make html
$ open build/html/index.html

Specify search paths

OptiX, TBB, Embree, and Python may be installed in a variety of locations. To specify locations
for libraries, use these methods the first time you invoke cmake in a clean build directory.

	Library

	Default search path

	CMake Custom search path

	OptiX

	/opt/optix

	-DOptiX_INSTALL_DIR=/path/to/optix

	TBB

	system

	TBB_LINK=/path/to/tbb/lib (env var)

	Embree

	system

	-Dembree_DIR=/path/to/embree-3.x.y (the directory containing embree-config.cmake)

	Python

	$PATH

	-DPYTHON_EXECUTABLE=/path/to/bin/python

Build C++ Documentation

To build the developer documentation, execute
doxygen in the repository root. It will write HTML output in devdoc/html/index.html.

Change log

fresnel [https://github.com/glotzerlab/fresnel] releases follow semantic versioning [https://semver.org/].

v0.9.0 (2019-04-30)

	Added support for linearizing colors of shape (4,)

	Improve examples

v0.8.0 (2019-03-05)

	Documentation improvements

	Add geometry.Polygon: Simple and/or rounded polygons in the z=0 plane.

	API breaking changes:

	Remove: geometry.Prism

v0.7.1 (2019-02-05)

	Fix conda-forge build on mac

v0.7.0 (2019-02-05)

	Add util.convex_polyhedron_from_vertices: compute convex polyhedron plane origins and normals given a set of vertices

	Improve documentation

	Add interact.SceneView: pyside2 widget for interactively rendering scenes with path tracing

	Add geometry.Mesh: Arbitrary triangular mesh geometry, instanced with N positions and orientations

	fresnel development is now hosted on github: https://github.com/glotzerlab/fresnel/

	Improve light.lightbox lighting setup

	API breaking changes:

	geometry.ConvexPolyhedron arguments changed. It now accepts polyhedron information as a dictionary.

v0.6.0 (2018-07-06)

	Implement tracer.Path on the GPU.

	Implement ConvexPolyhedron geometry on the GPU.

	Improve path tracer performance with Russian roulette termination.

	Compile warning-free.

	Fix sphere intersection test bugs on the GPU.

	tracer.Path now correctly starts sampling over when resized.

	Wrap C++ code with pybind 2.2

	Make documentation available on readthedocs: http://fresnel.readthedocs.io

	Fresnel is now available on conda-forge: https://anaconda.org/conda-forge/fresnel

	embree >= 3.0 is now required for CPU support

	Improve documentation

v0.5.0 (2017-07-27)

	Add new lighting setups

	lightbox

	cloudy

	ring

	Adjust brightness of lights in existing setups

	Remove clearcoat material parameter

	Add spec_trans material parameter

	Add Path tracer to render scenes with indirect lighting, reflections, and transparency (CPU-only)

	Add ConvexPolyhedron geometry (CPU-only, beta API, subject to change)

	Add fresnel.preview function to easily generate Preview traced renders with one line

	Add fresnel.pathtrace function to easily generate Path traced renders with one line

	Add anti-aliasing (always on for the Path tracer, set aa_level > 0 to enable for Preview)

	API breaking changes:

	render no longer exists. Use preview or pathtrace.

	tracer.Direct is now tracer.Preview.

CPU-only features will be implemented on the GPU in a future release.

v0.4.0 (2017-04-03)

	Enforce requirement: Embree >= 2.10.0

	Enforce requirement Pybind =1.8.1

	Enforce requirement TBB >= 4.3

	Rewrite camera API, add camera.fit to fit the scene

	scenes default to an automatic fit camera

	Implement area lights, add default lighting setups

	Scene now supports up to 4 lights, specified in camera space

	Implement Disney’s principled BRDF

	Tracer.histogram computes a histogram of the rendered image

	Tracer.enable_highlight_warning highlights overexposed pixels with a given warning color

	Device.available_modes lists the available execution modes

	Device.available_gpus lists the available GPUs

	Device can now be limited to n GPUs

	API breaking changes:

	camera.Orthographic is now camera.orthographic

	Device now takes the argument n instead of limit

	Scene no longer has a light_direction member

v0.3.0 (2017-03-09)

	Suppress “cannot import name” messages

	Support Nx3 and Nx4 inputs to color.linear

v0.2.0 (2017-03-03)

	Parallel rendering on the CPU

	Fix PTX file installation

	Fix python 2.7 support

	Unit tests

	Fix bug in sphere rendering on GPU

v0.1.0 (2017-02-02)

	Prototype API

	Sphere geometry

	Prism geometry

	outline materials

	diffuse materials

	Direct tracer

User community

fresnel-users mailing list

Subscribe to the fresnel-users [https://groups.google.com/d/forum/fresnel-users] mailing list to receive release announcements,
post questions for advice on using the software, and discuss potential new features.

Issue tracker

File bug reports on fresnel’s issue tracker [https://github.com/glotzerlab/fresnel/issues].

Contribute

fresnel is an open source project. Contributions are accepted via pull request to fresnel’s github repository [https://github.com/glotzerlab/fresnel].
Please review CONTRIBUTING.MD in the repository before starting development. You are encouraged to discuss your proposed contribution with the
fresnel user and developer community who can help you design your contribution to fit smoothly into the existing ecosystem.

Introduction

Fresnel is a python library that can ray trace publication quality images in real time. It provides a simple python API to define a scene consisting of any number of geometry primitives and render it to an output image.

To start, import the fresnel python module.

[1]:

import fresnel

Define a scene

A Scene defines a coordinate system, the camera view, the light sources, and contains a number of geometry primitives. Create a new Scene class instance. Scenes come with a default automatic camera that fits the geometry and a default set of lights.

[2]:

scene = fresnel.Scene()

Add geometry to the scene

A Scene may consist of any number of geometry objects. Each geometry object consists of N primitives of the same type, and a material that describes how the primitives interact with light sources. Create 8 spheres with radius 1.0.

[3]:

geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)

Geometry objects have a number of per-primitive attributes. These are exposed with an interface compatible with numpy arrays, and can copy data from numpy arrays efficiently. Set the positions of the spheres:

[4]:

geometry.position[:] = [[1,1,1],
 [1,1,-1],
 [1,-1,1],
 [1,-1,-1],
 [-1,1,1],
 [-1,1,-1],
 [-1,-1,1],
 [-1,-1,-1]]

Set the material of the geometry object to a rough blue surface:

[5]:

geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
 roughness=0.8)

Render the scene

preview quickly renders the scene from the view point of the camera.

[6]:

fresnel.preview(scene)

[6]:

[image: ../../_images/examples_00-Basic-tutorials_00-Introduction_11_0.png]

Enable anti-aliasing if you plan to use the output of preview for production use. The scene will take longer to render, but will have crisp edges.

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_00-Basic-tutorials_00-Introduction_13_0.png]

preview only applies direct lighting. Use pathtrace to account for indirect lighting. (anti-aliasing is always enabled when path tracing).

[8]:

fresnel.pathtrace(scene)

[8]:

[image: ../../_images/examples_00-Basic-tutorials_00-Introduction_15_0.png]

The resulting image is noisy. Increase the number of light samples to obtain a clean image.

[9]:

fresnel.pathtrace(scene, light_samples=40)

[9]:

[image: ../../_images/examples_00-Basic-tutorials_00-Introduction_17_0.png]

Save output

preview and pathtrace return output buffers that can be used like HxWx4 RGBA numpy arrays. You can pass this standard format on to other python libraries that work images (e.g. matplotlib [https://matplotlib.org/]).

[10]:

out = fresnel.preview(scene, aa_level=3)
print(out[:].shape)
print(out[:].dtype)

(370, 600, 4)
uint8

Use Pillow [https://pillow.readthedocs.io] to save the rendered output to a png file with transparency.

[11]:

import PIL

[12]:

image = PIL.Image.fromarray(out[:], mode='RGBA')
image.save('output.png')

To save a JPEG, create an RGB image. This ignores the alpha channel, so the scene background color will show.

[13]:

image = PIL.Image.fromarray(out[:,:,0:3], mode='RGB')
image.save('output.jpeg')

This is what output.jpeg looks like (the default background color is black):

[16]:

import IPython.display
IPython.display.Image('output.jpeg')

[16]:

[image: ../../_images/examples_00-Basic-tutorials_00-Introduction_26_0.jpeg]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Primitive properties

Each geometry type specifies a number of per-primitive properties. For example, the Sphere geometry has per-primitive position, radius, and color.

[1]:

import fresnel
scene = fresnel.Scene()

Setting properties when creating the geometry

Any of the properties may be set when the geometry is created, or they may be left as default values.

[2]:

geometry = fresnel.geometry.Sphere(scene,
 position = [[1,0,1],
 [1,0,-1],
 [-1,0,1],
 [-1,0,-1]],
 radius=1.0,
 material = fresnel.material.Material(color=fresnel.color.linear([0.42,0.267,1]))
 # per-primitive color left default
)

[3]:

fresnel.preview(scene, aa_level=3)

[3]:

[image: ../../_images/examples_00-Basic-tutorials_01-Primitive-properties_4_0.png]

Changing properties after creation

Access the per-primitive properties as if they were numpy arrays. The radius property for the Sphere geometry sets the radius of each primitive.

[4]:

geometry.radius[:] = [0.5, 0.6, 0.8, 1.0]

[5]:

fresnel.preview(scene, aa_level=3)

[5]:

[image: ../../_images/examples_00-Basic-tutorials_01-Primitive-properties_7_0.png]

The position property sets the position of each sphere in the scene’s coordinate system.

[6]:

geometry.position[:] = [[1.5,0,1],
 [1.5,0,-1],
 [-1.5,0,1],
 [-1.5,0,-1]]

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_00-Basic-tutorials_01-Primitive-properties_10_0.png]

The color property sets a per primitive color. The geometry material color and the primitive color are mixed with fraction primitive_color_mix. A value of 1.0 selects the primitive color, 0.0 selects the material color and values in between mix the colors.

[8]:

geometry.material.primitive_color_mix = 1.0
geometry.color[:] = fresnel.color.linear([[1,1,1], [0,0,1], [0,1,0], [1,0,0]])

[9]:

fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_00-Basic-tutorials_01-Primitive-properties_13_0.png]

[10]:

geometry.material.primitive_color_mix = 0.5

[11]:

fresnel.preview(scene, aa_level=3)

[11]:

[image: ../../_images/examples_00-Basic-tutorials_01-Primitive-properties_15_0.png]

Reading primitive properties

Primitive properties may be read as well as written.

[12]:

geometry.radius[:]

[12]:

array([0.5, 0.6, 0.8, 1.], dtype=float32)

[13]:

geometry.position[:]

[13]:

array([[1.5, 0. , 1.],
 [1.5, 0. , -1.],
 [-1.5, 0. , 1.],
 [-1.5, 0. , -1.]], dtype=float32)

[14]:

geometry.color[:]

[14]:

array([[1., 1., 1.],
 [0., 0., 1.],
 [0., 1., 0.],
 [1., 0., 0.]], dtype=float32)

Common errors

Primitive properties may be accessed like numpy arrays, but they may not be assigned directly.

[15]:

geometry.radius = 1.0

AttributeError Traceback (most recent call last)
<ipython-input-15-020bd663bace> in <module>()
----> 1 geometry.radius = 1.0

AttributeError: can't set attribute

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Material properties

Each geometry has an associated material. The material is a set of parameters that defines how light interacts with the geometry. Here is a test scene to demonstrate these properties.

[1]:

import fresnel
import math
device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)

Material color

The color of a material sets its base color. Default material parameters set a primarily diffuse material with light specular highlights.

[2]:

geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.9,0.714,0.169]))

[3]:

fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

[3]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_4_0.png]

Solid color materials

Set the solid parameter to 1.0 to disable material interaction with light. A solid material has no shading applied and always displays as color.

[4]:

geometry.material.solid = 1.0

[5]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[5]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_7_0.png]

Geometry / primitive color mixing

Set primitive_color_mix to any value in the range 0.0 to 1.0 to control the amount that the per-primitive colors mix with the geometry color.

[6]:

geometry.material.primitive_color_mix = 0.5
geometry.color[::2] = fresnel.color.linear([0,0,0])
geometry.color[1::2] = fresnel.color.linear([1,1,1])

[7]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[7]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_10_0.png]

Typical use cases utilize values of either 0.0 (force a single color defined by the material) or 1.0 (force the per primitive color.)

[8]:

geometry.material.primitive_color_mix = 1.0

geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])

[9]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[9]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_13_0.png]

To use a matplotlib color map, pass the output of the color map to fresnel.color.linear so the output colors appear as intended.

[10]:

import matplotlib, matplotlib.cm
import numpy
geometry.material.solid = 0.0
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=True),
 cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))

[11]:

fresnel.pathtrace(scene, w=300, h=300, light_samples=40)

[11]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_16_0.png]

All properties

Materials have a number of intuitive properties. All are defined in a nominal range from 0 to 1, though some values can be pushed past 1 for extremely strong effects.

	roughness - Set the roughness of the material. Recommend values >= 0.1.

	specular - Control the strength of the specular highlights

	metal - 0: dielectric materials (plastic, glass, etc…). 1: pure metals.

	spec_trans - Set the fraction of light that passes through the material.

Here are some examples of different material parameters.

[12]:

scene2 = fresnel.Scene(device)
spheres = []
for i in range(11):
 spheres.append(fresnel.geometry.Sphere(scene2, position = (i, 0, 0), radius=0.4))
 spheres[i].material = fresnel.material.Material(color=(.1,.7,.1))

tracer = fresnel.tracer.Path(device=device, w=1000, h=75)

scene2.lights = [fresnel.light.Light(direction=(1,1,-1), color=(0.5, 0.5, 0.5)),
 fresnel.light.Light(direction=(-1,-1,1), color=(0.5, 0.5, 0.5))]

Examples

These examples are front lit from the lower left and back lit from the upper right.

Vary roughness in a specular material from 0.1 to 1.1

[13]:

for i in range(11):
 spheres[i].material.specular = 1.0
 spheres[i].material.roughness = i/10+0.1

tracer.sample(scene2, samples=64, light_samples=40)

[13]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_21_0.png]

Vary specular from 0 to 1 with constant roughness.

[14]:

for i in range(11):
 spheres[i].material.specular = i/10
 spheres[i].material.roughness = 0.1
 spheres[i].material.color=(.7,.1,.1)

tracer.sample(scene2, samples=64, light_samples=40)

[14]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_23_0.png]

The following examples use cloudy lighting which places a bright hemisphere of light above the scene and a dim hemisphere of light below the scene.

Vary metal from 0 to 1 with a rough material. (metal materials look best when there is other geometry to reflect from the surface)

[15]:

for i in range(11):
 spheres[i].material.specular = 1.0
 spheres[i].material.color=(.7,.7,.7)
 spheres[i].material.metal = i/10

scene2.lights = fresnel.light.cloudy()
tracer.sample(scene2, samples=64, light_samples=40)

[15]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_25_0.png]

Vary spec_trans from 0 to 1 with all other quantities constant.

[16]:

for i in range(11):
 spheres[i].material.metal = 0.0
 spheres[i].material.spec_trans = i/10
 spheres[i].material.color=(.1,.1,.7)

tracer.sample(scene2, samples=64, light_samples=40)

[16]:

[image: ../../_images/examples_00-Basic-tutorials_02-Material-properties_27_0.png]

Execute this notebook with ipywidgets installed and use the panel below to explore the material parameters and how they react to different lighting angles.

[17]:

import ipywidgets

tracer.resize(450,450)

@ipywidgets.interact(color=ipywidgets.ColorPicker(value='#1c1c7f'),
 primitive_color_mix=ipywidgets.FloatSlider(value=0.0, min=0.0, max=1.0, step=0.1, continuous_update=False),
 roughness=ipywidgets.FloatSlider(value=0.3, min=0.1, max=1.0, step=0.1, continuous_update=False),
 specular=ipywidgets.FloatSlider(value=0.5, min=0.0, max=1.0, step=0.1, continuous_update=False),
 spec_trans=ipywidgets.FloatSlider(value=0.0, min=0.0, max=1.0, step=0.1, continuous_update=False),
 metal=ipywidgets.FloatSlider(value=0, min=0.0, max=1.0, step=1.0, continuous_update=False),
 light_theta=ipywidgets.FloatSlider(value=5.5, min=0.0, max=2*math.pi, step=0.1, continuous_update=False),
 light_phi=ipywidgets.FloatSlider(value=0.8, min=0.0, max=math.pi, step=0.1, continuous_update=False))
def test(color, primitive_color_mix, roughness, specular, spec_trans, metal, light_theta, light_phi):
 r = int(color[1:3], 16)/255;
 g = int(color[3:5], 16)/255;
 b = int(color[5:7], 16)/255;
 scene.lights[0].direction = (math.sin(light_phi)*math.cos(-light_theta),
 math.cos(light_phi),
 math.sin(light_phi)*math.sin(-light_theta))

 scene.lights[1].theta = math.pi
 geometry.material = fresnel.material.Material(color=fresnel.color.linear([r,g,b]),
 primitive_color_mix=primitive_color_mix,
 roughness=roughness,
 metal=metal,
 specular=specular,
 spec_trans=spec_trans
)
 return tracer.sample(scene, samples=64, light_samples=1)

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Outline materials

Each geometry has an associated outline material and an outline width. The outline material has all the same attributes as a normal material, but it is only applied in a thin line around each geometry primitive. The width of that line is the outline width.

[1]:

import fresnel
import math
scene = fresnel.Scene()
position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0, color=fresnel.color.linear([0,0,0]))
fresnel.light.cloudy();

[1]:

[<fresnel.light.Light at 0x7f6a380e19e8>,
 <fresnel.light.Light at 0x7f6a380a9358>]

Enabling outlines

The default outline width is 0. Set a non-zero outline width to enable the outlines.

[2]:

geometry.outline_width

[2]:

0.0

The outline width is in distance units in the same coordinate system as scene. The is width units wide perpendicular to the view direction. Outlines enhance the separation between primitives visually. They work well with diffuse and solid colored primitives.

[3]:

geometry.outline_width = 0.12

[4]:

fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

[4]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_6_0.png]

[5]:

geometry.material.solid = 1.0

[6]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[6]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_8_0.png]

Outline material properties

The default outline material is a solid black.

[7]:

geometry.outline_material.color

[7]:

(0.0, 0.0, 0.0)

[8]:

geometry.outline_material.solid

[8]:

1.0

[9]:

geometry.outline_material.primitive_color_mix

[9]:

0.0

The outline material has all the same properties as a normal material.

[10]:

geometry.outline_material.color = fresnel.color.linear(fresnel.color.linear([0.08,0.341,0.9]))

[11]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[11]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_15_0.png]

Outlines may be colored by the primitives:

[12]:

geometry.material.primitive_color_mix = 0.0
geometry.outline_material.primitive_color_mix = 1.0
geometry.outline_width = 0.4

[13]:

fresnel.preview(scene, w=300, h=300, aa_level=3)

[13]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_18_0.png]

Outlines may have diffuse shading:

[14]:

geometry.material.color = fresnel.color.linear([1,1,1])
geometry.material.solid = 0
geometry.outline_material.solid = 0

[15]:

fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

[15]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_21_0.png]

Or be metallic:

[16]:

geometry.material.color = fresnel.color.linear([0.08,0.341,0.9])

geometry.outline_material.solid = 0
geometry.outline_material.color = [0.95,0.95,0.95]
geometry.outline_material.roughness = 0.1
geometry.outline_material.metal = 1
geometry.outline_material.primitive_color_mix = 0.0
geometry.outline_width = 0.2

[17]:

fresnel.pathtrace(scene, w=300, h=300,light_samples=40)

[17]:

[image: ../../_images/examples_00-Basic-tutorials_03-Outline-materials_24_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Scene properties

Each Scene has a background color and alpha, lights, and a camera.

[1]:

import fresnel
import math
scene = fresnel.Scene()
position = []
for i in range(6):
 position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169]))
geometry.outline_width = 0.12

Background color and alpha

The default background color is black (0,0,0) and the background alpha is 0 (transparent).

[2]:

scene.background_color

[2]:

(0.0, 0.0, 0.0)

[3]:

scene.background_alpha

[3]:

0.0

The background color is applied to any pixel in the output image where no object is present. Change the background alpha to only partially transparent:

[4]:

scene.background_alpha = 0.5

[5]:

fresnel.preview(scene, aa_level=3)

[5]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_7_0.png]

Set a solid background color:

[6]:

scene.background_alpha = 1.0
scene.background_color = fresnel.color.linear([0.592, 0.722, 0.98])

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_10_0.png]

Light sources

Light sources light the objects in the scene. Without lights, all objects are black.

[8]:

scene.lights.clear()

[9]:

fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_13_0.png]

Fresnel defines several standard lighting setups that may be easily applied.

[10]:

scene.lights = fresnel.light.butterfly()

[11]:

fresnel.preview(scene, aa_level=3)

[11]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_16_0.png]

You can modify individual lights.

[12]:

scene.lights[0].direction = (-1, 0, 1)

[13]:

fresnel.preview(scene, aa_level=3)

[13]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_19_0.png]

Camera

The camera defines the view to render into the scene. By default, the camera is auto and the camera is automatically selected to fit the scene every time it is rendered.

[14]:

print(scene.camera)

auto

You can obtain the same camera explicitly with camera.fit. Call it after defining all of the geometry in your scene.

[15]:

scene.camera = fresnel.camera.fit(scene)

A camera is defined by its position, look-at point, up vector and height of the view into the scene. All of these quantities are in scene coordinates.

[16]:

scene.camera = fresnel.camera.orthographic(position=(0,0,2), look_at=(0,0,0), up=(0,1,0), height=6)
fresnel.preview(scene, aa_level=3)

[16]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_25_0.png]

You can modify these parameters individually.

[17]:

scene.camera.position = (3, 0, 10)
scene.camera.look_at=(3,0,0)

[18]:

fresnel.preview(scene, aa_level=3)

[18]:

[image: ../../_images/examples_00-Basic-tutorials_04-Scene-properties_28_0.png]

Print the full representation of the camera.

[19]:

print(repr(scene.camera))

fresnel.camera.orthographic(position=(3.0, 0.0, 10.0), look_at=(3.0, 0.0, 0.0), up=(0.0, 1.0, 0.0), height=6.0)

You can copy and paste this text to reproduce the same camera elsewhere.

[20]:

scene.camera = fresnel.camera.orthographic(position=(3.0, 0.0, 10.0),
 look_at=(3.0, 0.0, 0.0),
 up=(0.0, 1.0, 0.0),
 height=6.0)

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Lighting setups

Each Scene has associated lights. The lights control how the objects in a scene is lit.

[1]:

import fresnel
import math
import matplotlib, matplotlib.cm
from matplotlib import pyplot
%matplotlib inline
import numpy

device = fresnel.Device()
scene = fresnel.Scene(device)
position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(primitive_color_mix=1.0, color=(1,1,1))
mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=True),
 cmap = matplotlib.cm.get_cmap(name='viridis'))

v = numpy.linspace(0,1,len(position))
geometry.color[:] = fresnel.color.linear(mapper.to_rgba(v))
scene.camera = fresnel.camera.fit(scene, view='isometric')
tracer = fresnel.tracer.Path(device, w=450, h=450)

Lighting presets

Fresnel defines many lighting presets that use classic photography techniques to light the scene. Create a setup and assign it to the Scene’s lights.

The images in these examples are noisy because of the small number of samples. Increase the number of samples to obtain less noisy images.

Light box

A light box lights the scene equally from all sides. This type of lighting is commonly used product photography.

[2]:

scene.lights = fresnel.light.lightbox()
tracer.sample(scene, samples=64, light_samples=10)

[2]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_4_0.png]

Cloudy

Cloudy lighting mimics a cloudy day. Strong light comes from all directions above, while weak light comes from below.

[3]:

scene.lights = fresnel.light.cloudy()
tracer.sample(scene, samples=64, light_samples=10)

[3]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_6_0.png]

Rembrandt

Rembrandt lighting places the key light 45 degrees to one side and slightly up.

[4]:

scene.lights = fresnel.light.rembrandt()
tracer.sample(scene, samples=64, light_samples=10)

[4]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_8_0.png]

Use the side argument specify which side to place the key light on.

[5]:

scene.lights = fresnel.light.rembrandt(side='left')
tracer.sample(scene, samples=64, light_samples=10)

[5]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_10_0.png]

Loop lighting

Loop lighting places the key light slightly to one side and slightly up.

[6]:

scene.lights = fresnel.light.loop()
tracer.sample(scene, samples=64, light_samples=10)

[6]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_12_0.png]

Butterfly lighting

Butterfly lighting places the key light high above the camera.

[7]:

scene.lights = fresnel.light.butterfly()
tracer.sample(scene, samples=64, light_samples=10)

[7]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_14_0.png]

Ring lighting

The ring lighting setup provides a strong front area light. This type of lighting is common in fashion photography.

[8]:

scene.lights = fresnel.light.ring()
tracer.sample(scene, samples=64, light_samples=10)

[8]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_16_0.png]

Custom lights

You can define your own custom lights. Provide a direction vector pointing to the light in the coordinate system of the camera (+x points to the right, +y points up, and +z points out of the screen). The light color defines both the color (RGB) and the intensity of the light in a linear sRGB color space.

[9]:

my_lights = [fresnel.light.Light(direction=(1,-1,1), color=(1,1,1))]
scene.lights = my_lights

[10]:

tracer.sample(scene, samples=64, light_samples=10)

[10]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_19_0.png]

The shadows are very dark. Add another light to fill them in. You can access the scene’s lights directly. The value theta defines the half angle width of the light source. Large lights provide soft shadows.

[11]:

scene.lights.append(fresnel.light.Light(direction=(0,0,1), color=(1,1,1), theta=3.14))
tracer.sample(scene, samples=64, light_samples=10)

[11]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_21_0.png]

This image is overexposed.

Highlight warnings show overexposed areas of the image as a special color (default: magenta).

[12]:

tracer.enable_highlight_warning()
tracer.render(scene)

[12]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_23_0.png]

If the histogram is blocking up at 1.0, there are overexposed highlights.

[13]:

L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_25_0.png]

Reduce the intensity of the light to correctly expose the image.

[14]:

scene.lights[1].color=(0.45,0.45,0.45)
tracer.sample(scene, samples=64, light_samples=10)

[14]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_27_0.png]

Now there are no clipping warnings and the histogram shows a perfectly exposed image.

[15]:

L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_29_0.png]

scene.lights has typical sequence like behavior. You can assign a sequence of Light objects to it, append lights to it, and loop over the lights in it. For example, reverse the direction of every light:

[16]:

for l in scene.lights:
 d = l.direction;
 l.direction = (-d[0], -d[1], -d[2])

[17]:

scene.lights[1].color=(0.05,0.05,0.05)
tracer.disable_highlight_warning()
tracer.sample(scene, samples=64, light_samples=10)

[17]:

[image: ../../_images/examples_00-Basic-tutorials_05-Lighting-setups_32_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Sphere

[1]:

import fresnel
scene = fresnel.Scene()

The sphere geometry defines a set of N spheres. Each sphere has its own position, radius, and color.

[2]:

geometry = fresnel.geometry.Sphere(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
 roughness=0.8)

Geometric properties

position defines the position of each sphere.

[3]:

geometry.position[:] = [[-2,0,0], [0, 0, 0], [3, 0, 0]]

radius sets the radius of each sphere.

[4]:

geometry.radius[:] = [0.5, 1.0, 1.5]

[5]:

scene.camera = fresnel.camera.fit(scene, view='front', margin=0.5)
fresnel.preview(scene, aa_level=3)

[5]:

[image: ../../_images/examples_01-Primitives_00-Sphere-geometry_8_0.png]

Color

color sets the color of each sphere (when when primitive_color_mix > 0)

[6]:

geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_01-Primitives_00-Sphere-geometry_11_0.png]

Outlines

Outlines are applied on the outer edge of the sphere in the view plane.

[8]:

geometry.outline_width = 0.05

[9]:

fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_01-Primitives_00-Sphere-geometry_14_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Cylinder

[1]:

import fresnel
scene = fresnel.Scene()

The cylinder geometry defines a set of N spherocylinders. Each spherocylinder is defined by two end points and has its own radius, and end point colors.

[2]:

geometry = fresnel.geometry.Cylinder(scene, N=3)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
 roughness=0.8)

Geometric properties

points defines the end points of each cylinder.

[3]:

geometry.points[:] = [[[-5,-1,-1], [-2, 1, 1]],
 [[1, -2, 1],[0, 2, -1]],
 [[5, -1.5, 2], [3, 1.5, -2]]]

radius sets the radius of each spherocylinder.

[4]:

geometry.radius[:] = [0.5, 1.0, 1.5]

[5]:

scene.camera = fresnel.camera.fit(scene, view='front', margin=0.5)
fresnel.preview(scene, aa_level=3)

[5]:

[image: ../../_images/examples_01-Primitives_01-Cylinder-geometry_8_0.png]

Color

color sets the color of the end points of each cylinder (when primitive_color_mix > 0). The color transitions at the midpoint.

[6]:

geometry.color[:] = [[[0.9,0,0], [0.9, 0, 0]],
 [[0, 0.9, 0], [0, 0.9, 0.9]],
 [[0.9, 0.9, 0], [0, 0, 0.9]]]
geometry.material.primitive_color_mix = 1.0

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_01-Primitives_01-Cylinder-geometry_11_0.png]

Outlines

Outlines are applied on the outer edge of the cylinder in the view plane.

[8]:

geometry.outline_width = 0.05

[9]:

fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_01-Primitives_01-Cylinder-geometry_14_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Convex polyhedron

[1]:

import fresnel
import itertools
import math
import numpy as np
device = fresnel.Device()
scene = fresnel.Scene(device)

The convex polyhedron geometry defines a set of N convex polyhedra. The shape of all N polyhedra is identical and defined by P planes. Each polyhedron has its own position, orientation, and color. You must also specify the circumsphere radius r. Note that the information used to draw a convex polyhedron is easily obtained from it’s vertices via the util.convex_polyhedron_from_vertices() utility function.

To construct a truncated cube:

[2]:

first get cube verts
pm = [-1, 1]
cube_verts = list(itertools.product(pm, repeat=3))
trunc_cube_verts = []
truncate by removing corners and adding vertices to edges
for p1, p2 in itertools.combinations(cube_verts, 2):
 # don't add points along any diagonals
 match = (p1[0]==p2[0], p1[1]==p2[1], p1[2]==p2[2])
 if match.count(False) == 1: # only 1 coordinate changes, not a diagonal
 p1, p2 = np.array(p1), np.array(p2)
 vec = p2 - p1
 trunc_cube_verts.append(p1 + vec/3)
 trunc_cube_verts.append(p1 + 2*vec/3)

[3]:

c1 = fresnel.color.linear([0.70, 0.87, 0.54])*0.8
c2 = fresnel.color.linear([0.65,0.81,0.89])*0.8
colors = {8: c1, 3: c2}
poly_info = fresnel.util.convex_polyhedron_from_vertices(trunc_cube_verts)
for idx, fs in enumerate(poly_info['face_sides']):
 poly_info['face_color'][idx] = colors[fs]
geometry = fresnel.geometry.ConvexPolyhedron(scene,
 poly_info,
 N=3
)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]),
 roughness=0.8)

Geometric properties

position defines the position of the center of each convex polyhedron.

[4]:

geometry.position[:] = [[-3,0,0], [0, 0, 0], [3, 0, 0]]

orientation sets the orientation of each convex polyhedron as a quaternion

[5]:

geometry.orientation[:] = [[1, 0, 0, 0],
 [0.80777943, 0.41672122, 0.00255412, 0.41692838],
 [0.0347298, 0.0801457, 0.98045, 0.176321]]

[6]:

scene.camera = fresnel.camera.fit(scene, view='front', margin=0.8)
fresnel.preview(scene, aa_level=3)

[6]:

[image: ../../_images/examples_01-Primitives_02-Convex-polyhedron-geometry_9_0.png]

Color

color sets the color of each individual convex polyhedron (when primitive_color_mix > 0 and color_by_face < 1)

[7]:

geometry.color[:] = fresnel.color.linear([[0.9,0,0], [0, 0.9, 0], [0, 0, 0.9]])
geometry.material.primitive_color_mix = 1.0
fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_01-Primitives_02-Convex-polyhedron-geometry_11_0.png]

Set color_by_face > 0 to color the faces of the polyhedra independently. poly_info['face_colors'] (i.e., the output of convex_polyhedron_from_vertices, which we modified above) sets the color of each face. Above, we set the color of the each face based on number of sides it has.

[8]:

geometry.color_by_face = 1.0
fresnel.preview(scene, aa_level=3)

[8]:

[image: ../../_images/examples_01-Primitives_02-Convex-polyhedron-geometry_13_0.png]

Outlines

Outlines are applied at the outer edge of each face.

[9]:

geometry.outline_width = 0.02
fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_01-Primitives_02-Convex-polyhedron-geometry_15_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

[1]:

import fresnel
import numpy
import matplotlib, matplotlib.cm

Mesh

The mesh geometry defines a generic triangle mesh. Define a mesh with an 3Tx3 array where T is the number of triangles. Triangles must be specified with a counter clockwise winding. Here is the Standford bunny [https://graphics.stanford.edu/data/3Dscanrep/] as an example:

[2]:

https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
verts = numpy.load('bunny.npy')

Geometric properties

Pass the vertices to the mesh geometry.

[3]:

scene1 = fresnel.Scene()
bunny = fresnel.geometry.Mesh(scene1,vertices=verts,N=1)

[4]:

bunny.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]), roughness=0.6)
scene1.camera = fresnel.camera.fit(scene1,margin=0)
scene1.lights = fresnel.light.cloudy()
fresnel.pathtrace(scene1, samples=200)

[4]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_5_0.png]

Specify position and orientation to instantiate the mesh many times.

[5]:

scene2 = fresnel.Scene()
bunnies = fresnel.geometry.Mesh(scene2,vertices=verts,N=2)
bunnies.position[:] = [[0,0,0], [-0.11,0,0.1]]
bunnies.orientation[:] = [[1,0,0,0], [0,0,1,0]]

[6]:

bunnies.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,0.9]), roughness=0.6)
scene2.camera = fresnel.camera.fit(scene1,margin=0)
scene2.lights = fresnel.light.cloudy()
fresnel.pathtrace(scene2, samples=200)

[6]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_8_0.png]

Color

Specify per vertex colors. These colors are smoothly interpolated across the triangles. Set primitive_color_mix=1 to choose the per-vertex colors.

Color the bunny based on the y-coordinate of the mesh:

[7]:

mapper = matplotlib.cm.ScalarMappable(norm = matplotlib.colors.Normalize(vmin=-0.08, vmax=0.05, clip=True),
 cmap = matplotlib.cm.get_cmap(name='viridis'))

bunny.color[:] = fresnel.color.linear(mapper.to_rgba(verts[:,1]))
bunny.material.primitive_color_mix = 1.0

[8]:

fresnel.pathtrace(scene1, samples=200)

[8]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_11_0.png]

Here is a single triangle demo to demonstrate the interpolation:

[9]:

scene3 = fresnel.Scene()
triangle = fresnel.geometry.Mesh(scene3,vertices=[[0,0,0],[1,0,0],[0,1,0]],N=1)
triangle.material.solid = 1
triangle.material.primitive_color_mix = 1.0
triangle.color[:] = [[1,0,0], [0,1,0], [0,0,1]]

[10]:

scene3.camera = fresnel.camera.fit(scene3, view='front')
fresnel.preview(scene3, aa_level=3)

[10]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_14_0.png]

Outlines

Outlines are placed on the outer edge of each triangle in the mesh.

[11]:

triangle.outline_width=0.01
fresnel.preview(scene3, aa_level=3)

[11]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_16_0.png]

[12]:

bunny.outline_width=0.0002
scene1.camera.height *= 0.5
fresnel.pathtrace(scene1, samples=200)

[12]:

[image: ../../_images/examples_01-Primitives_03-Mesh-geometry_17_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Polygon

[1]:

import fresnel
scene = fresnel.Scene()

The polygon geometry defines a set of N simple polygons in two dimensions. All polygons in the geometry have the same vertices. Each polygon has a separate position, orientation angle, and color.

[2]:

geometry = fresnel.geometry.Polygon(scene,
 N=2,
 vertices = [[0, -1], [1, 1],
 [0, 0.5], [-1, 1]])
geometry.material.color = fresnel.color.linear([0.20,0.64,0.58])
geometry.material.solid=1

Geometric properties

position defines the position of each polygon in the z=0 plane.

[3]:

geometry.position[:] = [[-1,0],
 [1, 0]]

angle defines the rotation angle of each polygon

[4]:

geometry.angle[:] = [0.1, -1.0]

[5]:

fresnel.preview(scene, aa_level=3)

[5]:

[image: ../../_images/examples_01-Primitives_04-Polygon-geometry_8_0.png]

Color

color sets the color of each polygon (when primitive_color_mix > 0).

[6]:

geometry.color[:] = [fresnel.color.linear([0.02,0.23,0.42]),
 fresnel.color.linear([0.38,0.84,0.98])];
geometry.material.primitive_color_mix = 1.0

[7]:

fresnel.preview(scene, aa_level=3)

[7]:

[image: ../../_images/examples_01-Primitives_04-Polygon-geometry_11_0.png]

Outlines

Outlines are applied inside the outer edge of the polygon in the z=0 plane.

[8]:

geometry.outline_width = 0.05

[9]:

fresnel.preview(scene, aa_level=3)

[9]:

[image: ../../_images/examples_01-Primitives_04-Polygon-geometry_14_0.png]

Rounded polygons

Specify rounding_radius to round the edges of the polygon.

[10]:

scene2 = fresnel.Scene()
geometry2 = fresnel.geometry.Polygon(scene2,
 rounding_radius=0.3,
 N=1,
 vertices = [[-1, -1], [1, -1],
 [1, 1], [-1, 1]],
 outline_width=0.1)
geometry2.material.color=fresnel.color.linear([0.56,0.03,0.28])
geometry2.material.solid=1

[11]:

fresnel.preview(scene2, aa_level=3)

[11]:

[image: ../../_images/examples_01-Primitives_04-Polygon-geometry_17_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Multiple geometries

A Scene may consist of more than one geometry object. For fast performance, try to condense the scene down to as few geometries with as many primitives as possible. Multiple geometries allow for different materials to be applied to the same type of geometry and for different types of geometry in the same scene.

[1]:

import fresnel
scene = fresnel.Scene()

Create multiple geometries

To create multiple geometries, instantiate several instances of the geometry class.

[2]:

geom1 = fresnel.geometry.Sphere(scene, position = [[-3.2, 1, 0], [-3.2, -1, 0], [-1.2, 1, 0], [-1.2, -1, 0]], radius=1.0)
geom1.material = fresnel.material.Material(solid=1.0, color=fresnel.color.linear([0.42,0.267,1]))
geom1.outline_width = 0.12

[3]:

geom2 = fresnel.geometry.Sphere(scene, position = [[3.2, 1, 0], [3.2, -1, 0], [1.2, 1, 0], [1.2, -1, 0]], radius=1.0)
geom2.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169]))

[4]:

fresnel.preview(scene, w=900, h=370, aa_level=3)

[4]:

[image: ../../_images/examples_02-Advanced-topics_00-Multiple-geometries_5_0.png]

Disable geometries

disable a geometry to prevent it from appearing in the scene.

[5]:

geom1.disable()

[6]:

fresnel.preview(scene, w=900, h=370, aa_level=3)

[6]:

[image: ../../_images/examples_02-Advanced-topics_00-Multiple-geometries_8_0.png]

enable the geometry to make it appear again.

[7]:

geom1.enable()

[8]:

fresnel.preview(scene, w=900, h=370, aa_level=3)

[8]:

[image: ../../_images/examples_02-Advanced-topics_00-Multiple-geometries_11_0.png]

Remove geometry

Call remove to completely remove a geometry instance from the scene. It cannot be added back.

[9]:

geom2.remove()

[10]:

fresnel.preview(scene, w=900, h=370, aa_level=3)

[10]:

[image: ../../_images/examples_02-Advanced-topics_00-Multiple-geometries_14_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Devices

Each Scene is attached to a specific Device. The Device controls what hardware the ray tracing executes on. Scene implicitly creates a default Device when you do not specify one.

The default device

The default device automatically selects GPU ray tracing if the gpu module is compiled and there is at least one gpu present in the system - otherwise it selects CPU ray tracing.

[1]:

import fresnel
device = fresnel.Device()

Query available execution modes

The available_modes static variable lists which execution modes are available. This will vary based on compile time options and whether there is a GPU present in the system.

[2]:

print(fresnel.Device.available_modes)

['gpu', 'cpu', 'auto']

available_gpus lists the GPUs available for rendering in the system.

[3]:

for g in fresnel.Device.available_gpus:
 print(g)

 [0]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM
 [1]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM

Choose execution hardware

Explicitly manage a Device to control what hardware the ray tracing executes on. Converting the device to a string provides a short summary of the device configuration.

[4]:

gpu = fresnel.Device(mode='gpu')
print(gpu)

<fresnel.Device: Enabled OptiX devices:
 [0]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM
 [1]: Quadro GP100 56 SM_6.0 @ 1.44 GHz, 8276 MiB DRAM
>

[5]:

cpu = fresnel.Device(mode='cpu')
print(cpu)

<fresnel.Device: All available CPU threads>

Set n to specify how many CPU threads or GPUs to use in parallel. By default, a device will use all available CPU cores or GPUs in the system.

[6]:

cpu_limit = fresnel.Device(mode='cpu', n=6)
print(cpu_limit)

<fresnel.Device: 6 CPU threads>

Attach a scene to a device

Each Scene must be attached to a device when created.

[7]:

scene_gpu = fresnel.Scene(device=gpu)

[8]:

scene_cpu = fresnel.Scene(device=cpu)

These two scenes have the same API, but different implementations.

[9]:

for scene in [scene_cpu, scene_gpu]:
 geometry = fresnel.geometry.Sphere(scene, N=8, radius=1.0)
 geometry.position[:] = [[1,1,1],
 [1,1,-1],
 [1,-1,1],
 [1,-1,-1],
 [-1,1,1],
 [-1,1,-1],
 [-1,-1,1],
 [-1,-1,-1]]
 geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.25,0.5,1]))

Rendered output is essentially identical from the two devices.

[10]:

fresnel.preview(scene_gpu, w=300, h=300, aa_level=3)

[10]:

[image: ../../_images/examples_02-Advanced-topics_01-Devices_17_0.png]

[11]:

fresnel.preview(scene_cpu, w=300, h=300, aa_level=3)

[11]:

[image: ../../_images/examples_02-Advanced-topics_01-Devices_18_0.png]

Memory consumption

Each Device consumes memory by itself. When maintaining multiple scenes, attach them all to the same device to reduce memory consumption.

[12]:

import math
scene2_gpu = fresnel.Scene(device=gpu)
position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
geometry = fresnel.geometry.Sphere(scene2_gpu, position = position, radius=1.0)
geometry.color[::4] = fresnel.color.linear([0.25,0.5,1])
geometry.color[1::4] = fresnel.color.linear([1,0.714,0.169])
geometry.color[2::4] = fresnel.color.linear([0.42,0.267,1])
geometry.color[3::4] = fresnel.color.linear([1,0.874,0.169])
geometry.material = fresnel.material.Material(solid=0.0, primitive_color_mix=1.0)

[13]:

fresnel.preview(scene2_gpu, w=300, h=300, aa_level=3)

[13]:

[image: ../../_images/examples_02-Advanced-topics_01-Devices_21_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Tracer methods

Most of the tutorials use fresnel.preview() and fresnel.pathtrace() to render output images. This is a convenience API, and there are cases where it is not appropriate. To render many frames, such as in a movie or interactive visualization, use a Tracer directly to avoid overhead.

[1]:

import fresnel
import math
from matplotlib import pyplot
%matplotlib inline
device = fresnel.Device()
scene = fresnel.Scene(device=device)
position = []
for i in range(6):
 position.append([2*math.cos(i*2*math.pi / 6), 2*math.sin(i*2*math.pi / 6), 0])

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(solid=0.0, color=fresnel.color.linear([1,0.874,0.169])*0.9)
geometry.outline_width = 0.12
scene.camera = fresnel.camera.fit(scene, view='front', margin=0.2)

Common Tracer operations

The Tracer must use the same device as the Scenes it renders. Each Tracer maintains an output image, and the width w and height h must be defined when the tracer is created.

[2]:

tracer = fresnel.tracer.Preview(device=device, w=300, h=300, aa_level=3)

Rendering and accessing output images

The render method renders the output.

[3]:

out = tracer.render(scene)

The return value of render is a proxy reference to the internal image buffer of the Tracer. You can access with a numpy array like interface.

[4]:

out[100,100]

[4]:

array([139, 121, 21, 255], dtype=uint8)

The output object also provides an interface for jupyter to display the image.

[5]:

out

[5]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_10_0.png]

tracer.output also accesses the output buffer.

[6]:

tracer.output

[6]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_12_0.png]

The tracer can render a modified scene without the initialization overhead.

[7]:

scene.camera.up = (1,0,0)
tracer.render(scene);

After rendering, existing references to the output buffer will access the newly rendered image.

[8]:

out

[8]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_16_0.png]

Evaluate image exposure

Tracer provides several methods to evaluate image exposure. Enable highlight warnings to flag overexposed pixels in the output image.

[9]:

tracer.enable_highlight_warning()

The test image is exposed correctly, there are no warning pixels.

[10]:

tracer.render(scene)

[10]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_20_0.png]

Make the main light brighter to show the highlight warnings.

[11]:

scene.lights[0].color = (1.2, 1.2, 1.2)
tracer.render(scene)

[11]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_22_0.png]

Tracer can also compute the image histogram to evaluate image exposure.

[12]:

L, bins = tracer.histogram()
pyplot.fill_between(bins, L[:,3], color='blue');
pyplot.fill_between(bins, L[:,2], color='green');
pyplot.fill_between(bins, L[:,1], color='red');
pyplot.fill_between(bins, L[:,0], color='gray');
pyplot.axis(ymax=400, ymin=0)

[12]:

(-0.04794921875, 1.04990234375, 0, 400)

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_24_1.png]

[13]:

tracer.disable_highlight_warning()

Resizing the output buffer

Call resize to set a new size for the output. When the image is resized, any existing rendered output is lost.

[14]:

tracer.resize(w=150, h=150)

[15]:

tracer.output

[15]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_28_0.png]

The next call to render will render into the new output size.

[16]:

tracer.render(scene)

[16]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_30_0.png]

The Preview tracer

The Preview tracer renders output images quickly with approximate lighting effects.

[17]:

tracer = fresnel.tracer.Preview(device=device, w=300, h=300)

The aa_level attribute controls the strength of the anti-aliasing.

[18]:

tracer.aa_level

[18]:

0

[19]:

tracer.render(scene)

[19]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_35_0.png]

[20]:

tracer.aa_level = 1

[21]:

tracer.render(scene)

[21]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_37_0.png]

[22]:

tracer.aa_level = 3

[23]:

tracer.render(scene)

[23]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_39_0.png]

A different random number seed will result in different jittered anti-aliasing samples.

[24]:

tracer.seed = 12
tracer.aa_level = 1

[25]:

tracer.render(scene)

[25]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_42_0.png]

Here is a different scene rendered with the Preview tracer:

[28]:

position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
scene = fresnel.Scene(device)
scene.lights[1].theta = math.pi

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.1,0.1,0.4]),
 roughness=0.1,
 specular=1.0)

[29]:

tracer.resize(w=450, h=450)
tracer.aa_level = 3
tracer.render(scene)

[29]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_45_0.png]

The Path tracer

The Path tracer supports soft lighting, reflections, and other lighting effects.

Here is the same scene with the path tracer:

[30]:

path_tracer = fresnel.tracer.Path(device=device, w=450, h=450)

[31]:

path_tracer.sample(scene, samples=64, light_samples=40)

[31]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_49_0.png]

The Path tracer performs many independent samples and averages them together. reset() starts averaging a new image.

[32]:

path_tracer.reset()

render() accumulates a single sample into the resulting image.

[33]:

path_tracer.render(scene)

[33]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_53_0.png]

The resulting image is noisy, average many samples together to obtain a clean image.

[34]:

for i in range(64):
 path_tracer.render(scene)

path_tracer.output

[34]:

[image: ../../_images/examples_02-Advanced-topics_02-Tracer-methods_55_0.png]

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

[1]:

import fresnel
import math

Interactive scene view

fresnel provides a Qt widget to interactively display scenes rendered with the path tracer. This is implemented with the PySide2 [https://wiki.qt.io/PySide2] library. Using jupyter support for this library, you can open an interactive window outside if the browser and interact with it from the jupyter notebook.

First, initialize jupyter’s pyside2 integration.

[2]:

from PySide2 import QtCore
%gui qt

Then, import fresnel.interact. This must be done after %gui qt.

[3]:

import fresnel.interact

Build a scene

[4]:

position = []
for k in range(5):
 for i in range(5):
 for j in range(5):
 position.append([2*i, 2*j, 2*k])
scene = fresnel.Scene()
scene.lights[1].theta = math.pi

geometry = fresnel.geometry.Sphere(scene, position = position, radius=1.0)
geometry.material = fresnel.material.Material(color=fresnel.color.linear([0.1,0.1,0.8]),
 roughness=0.1,
 specular=1.0)

SceneView widget

Create a interact.SceneView widget to visualize the scene.

[5]:

view = fresnel.interact.SceneView(scene)

When the SceneView is the result of a cell, the windows shows and gets focus.

[6]:

view

[6]:

scene view opened in a new window...

In the new window, you can click and drag to rotate the camera. Jupyter is still running so you can query changes to the window here. For example, after rotating the camera, inspect the new camera configuration:

[9]:

repr(scene.camera)

[9]:

'fresnel.camera.orthographic(position=(13.338582992553711, 5.879554748535156, 4.090480327606201), look_at=(4.0, 4.0, 4.0), up=(-0.17314134538173676, 0.8814100027084351, -0.4394752085208893), height=10.116935729980469)'

After you change scene properties, call setScene to re-render the scene with the changes. For example: change the material color.

[8]:

geometry.material.color = fresnel.color.linear([0.8,0.1,0.1])
view.setScene(scene)

This page was generated from a jupyter [https://jupyter.org/] notebook. You can download and run the notebook locally from the fresnel-examples [https://github.com/glotzerlab/fresnel-examples] repository.

Rendering images in matplotlib

Images rendered by fresnel can be converted to RGBA arrays for display with the imshow command in matplotlib. This example shows how to build subplots that display the geometries of the Platonic Solids.

[1]:

import numpy as np
import fresnel
import matplotlib
import matplotlib.pyplot as plt

[2]:

platonic_solid_vertices = {
 'Tetrahedron': [
 [0.0, 0.0, 0.612372],
 [-0.288675, -0.5, -0.204124],
 [-0.288675, 0.5, -0.204124],
 [0.57735, 0.0, -0.204124]],
 'Cube': [
 [-0.5, -0.5, -0.5],
 [-0.5, -0.5, 0.5],
 [-0.5, 0.5, -0.5],
 [-0.5, 0.5, 0.5],
 [0.5, -0.5, -0.5],
 [0.5, -0.5, 0.5],
 [0.5, 0.5, -0.5],
 [0.5, 0.5, 0.5]],
 'Octahedron': [
 [-0.707107, 0.0, 0.0],
 [0.0, 0.707107, 0.0],
 [0.0, 0.0, -0.707107],
 [0.0, 0.0, 0.707107],
 [0.0, -0.707107, 0.0],
 [0.707107, 0.0, 0.0]],
 'Dodecahedron': [
 [-1.37638, 0.0, 0.262866],
 [1.37638, 0.0, -0.262866],
 [-0.425325, -1.30902, 0.262866],
 [-0.425325, 1.30902, 0.262866],
 [1.11352, -0.809017, 0.262866],
 [1.11352, 0.809017, 0.262866],
 [-0.262866, -0.809017, 1.11352],
 [-0.262866, 0.809017, 1.11352],
 [-0.688191, -0.5, -1.11352],
 [-0.688191, 0.5, -1.11352],
 [0.688191, -0.5, 1.11352],
 [0.688191, 0.5, 1.11352],
 [0.850651, 0.0, -1.11352],
 [-1.11352, -0.809017, -0.262866],
 [-1.11352, 0.809017, -0.262866],
 [-0.850651, 0.0, 1.11352],
 [0.262866, -0.809017, -1.11352],
 [0.262866, 0.809017, -1.11352],
 [0.425325, -1.30902, -0.262866],
 [0.425325, 1.30902, -0.262866]],
 'Icosahedron': [
 [0.0, 0.0, -0.951057],
 [0.0, 0.0, 0.951057],
 [-0.850651, 0.0, -0.425325],
 [0.850651, 0.0, 0.425325],
 [0.688191, -0.5, -0.425325],
 [0.688191, 0.5, -0.425325],
 [-0.688191, -0.5, 0.425325],
 [-0.688191, 0.5, 0.425325],
 [-0.262866, -0.809017, -0.425325],
 [-0.262866, 0.809017, -0.425325],
 [0.262866, -0.809017, 0.425325],
 [0.262866, 0.809017, 0.425325]],
 }

The render function returns a NumPy array of the output buffer, which can be passed directly to imshow.

[3]:

def render(shape, color_id=0):
 verts = platonic_solid_vertices[shape]
 scene = fresnel.Scene(fresnel.Device(mode='cpu'))
 scene.lights = fresnel.light.lightbox()
 poly_info = fresnel.util.convex_polyhedron_from_vertices(verts)
 cmap = matplotlib.cm.get_cmap('tab10')
 geometry = fresnel.geometry.ConvexPolyhedron(
 scene, poly_info,
 position = [0, 0, 0],
 orientation = [0.975528, 0.154508, -0.154508, -0.024472],
 outline_width = 0.015)
 geometry.material = fresnel.material.Material(
 color = fresnel.color.linear(cmap(color_id)[:3]),
 roughness = 0.1,
 specular = 1)
 geometry.outline_material = fresnel.material.Material(
 color = (0., 0., 0.),
 roughness = 0.1,
 metal = 1.0)

 scene.camera = fresnel.camera.fit(scene, view='front')
 out = fresnel.pathtrace(scene, samples=64,
 light_samples=32,
 w=200, h=200)
 return out[:]

Below, imshow is used to render one scene in each subplot. Specifying an interpolation with imshow improves image quality.

[4]:

def show_shape(shape, location, color_id):
 ax = axs[location]
 ax.imshow(render(shape, color_id), interpolation='lanczos')
 ax.set_xlabel(shape, fontsize=22)

fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(10, 8))

show_shape('Tetrahedron', (0, 0), 0)
show_shape('Cube', (0, 1), 1)
show_shape('Octahedron', (0, 2), 2)
show_shape('Dodecahedron', (1, 0), 3)
show_shape('Icosahedron', (1, 1), 4)

for ax in axs.flatten():
 ax.set_xticks([])
 ax.set_yticks([])
 ax.spines['right'].set_visible(False)
 ax.spines['top'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.spines['left'].set_visible(False)

fig.suptitle('The Platonic Solids', y=0.92, fontsize=32)
plt.show()

[image: ../../_images/examples_02-Advanced-topics_04-Rendering-images-in-matplotlib_6_0.png]

fresnel

Overview

	fresnel.Device

	Hardware device to use for ray tracing.

	fresnel.Scene

	Content of the scene to ray trace.

Details

The fresnel ray tracing package.

	
fresnel.__version__

	Fresnel version

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class fresnel.Device(mode='auto', n=None)

	Hardware device to use for ray tracing.

	Parameters

	
	mode (str) – Specify execution mode: Valid values are auto, gpu, and cpu.

	n (int) – Specify the number of cpu threads / gpus this device will use.
None sets no limit.

Device defines hardware device to use for ray tracing. Scene and
tracer instances must be attached to a Device. You may attach any number of
scenes and tracers to a single Device.

See also

	Devices
	Tutorial: Using devices.

	Tracer methods
	Tutorial: Using tracers with devices.

When mode is auto, the default, Device GPU rendering and
fall back on CPU rendering if there is no GPU available or GPU support was not compiled in. Set mode to
gpu or cpu to force a specific mode.

Important

By default (n==None), this device will use all available GPUs or CPU cores. Set n to the number of GPUs or CPU
cores this device should use. When selecting n GPUs, the device selects the first n in the
available_gpus list.

Tip

Use only a single Device to reduce memory consumption.

The static member available_modes lists which modes are available. For a mode to be available, the
corresponding module must be enabled at compile time. Additionally, there must be at least one GPU present
for the gpu mode to be available.

>>> fresnel.Device.available_modes
['gpu', 'cpu', 'auto']

	
available_modes

	List of the available execution modes (static member).

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
available_gpus

	List of the available gpus (static member).

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
mode

	The active mode

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class fresnel.Scene(device=None, camera='auto', lights=[<fresnel.light.Light object>, <fresnel.light.Light object>])

	Content of the scene to ray trace.

	Parameters

	device (Device) – Device to create this Scene on.

Scene defines the contents of the scene to be ray traced, including any number of
geometry objects, the camera,
background color, background alpha,
and the lights.

Every Scene attaches to a Device. For convenience, Scene creates a default
Device when device is None. If you want a non-default device, you must create it explicitly.

See also

	Introduction
	Tutorial: Introduction to scenes

	Scene properties
	Tutorial: Setting scene properties.

	Lighting setups
	Tutorial: Using lighting setups with scenes.

	Devices
	Tutorial: Using devices.

Lights

lights is a sequence of up to 4 directional lights that apply to the scene globally. Each light has a
direction and color. You can assign lights using one of the predefined setups:

scene.lights = fresnel.light.butterfly()

You can assign a sequence of Light objects:

scene.lights = [fresnel.light.Light(direction=(1,2,3))]

You can modify the lights in place:

>>> print(len(scene.lights))
2
>>> l.append(fresnel.light.Light(direction=(1,0,0), color=(1,1,1)))
>>> print(len(3))
1
>>> print(l[2]).direction
(1,0,0)
>>> l[0].direction = (-1,0,0)
>>> print(l[0]).direction
(-1,0,0)

	
device

	Device this Scene is attached to.

	Type

	Device

	
camera

	Camera view parameters, or ‘auto’ to automatically choose a camera.

	Type

	camera.Camera

	
background_color

	Background color (r,g,b) as a tuple or other 3-length python object, in the
linearized color space. Use fresnel.color.linear() to convert standard
sRGB colors

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float]]

	
background_alpha

	Background alpha (opacity).

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
lights

	Globals lights in the scene.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][light.Light]

	
get_extents()

	Get the extents of the scene

	Returns

	[[minimum x, minimum y, minimum z], [maximum x, maximum y, maximum z]]

	
fresnel.pathtrace(scene, w=600, h=370, samples=64, light_samples=1)

	Path trace a scene.

	Parameters

	
	scene (Scene) – Scene to render.

	w (int) – Output image width.

	h (int) – Output image height.

	samples (int) – Number of times to sample the pixels of the scene.

	light_samples (int) – Number of light samples to take for each pixel sample.

pathtrace() is a shortcut to rendering output with the Path tracer.
See the Path tracer for a complete description.

	
fresnel.preview(scene, w=600, h=370, aa_level=0)

	Preview a scene.

	Parameters

	
	scene (Scene) – Scene to render.

	w (int) – Output image width.

	h (int) – Output image height.

	aa_level (int) – Amount of anti-aliasing to perform

preview() is a shortcut to rendering output with the Preview tracer.
See the Preview tracer for a complete description.

Modules

	fresnel.camera

	fresnel.color

	fresnel.geometry

	fresnel.interact

	fresnel.light

	fresnel.material

	fresnel.tracer

	fresnel.util

fresnel.camera

Overview

	fresnel.camera.Camera

	Defines the view into the Scene.

	fresnel.camera.fit

	Fit a camera to a Scene

	fresnel.camera.orthographic

	Orthographic camera

Details

Cameras.

	
class fresnel.camera.Camera(_camera=None)

	Defines the view into the Scene.

Use one of the creation functions to create a Camera:

	orthographic()

See also

	Scene properties
	Tutorial: Setting scene properties

	TODO:
	More advanced camera tutorials (when more advance camera functions are available)

The camera is a property of the Scene. You may read and modify any of these camera attributes.

	
position

	the position of the camera (the center of projection).

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
look_at

	the point the camera looks at (the center of the focal plane).

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
up

	a vector pointing up.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
height

	the height of the image plane.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
basis

	three orthonormal vectors defining the camera coordinate basis in the right-handed order right, look direction, up (read only)

Camera space is a coordinate system centered on the camera’s position.
Positive x points to the right in the image, positive y points up, and positive z points out of the screen.
Camera space shares units with Scene space.

TODO: Move description of spaces to an overview page and create figures.
TODO: Use numpy arrays for camera vectors?

	
fresnel.camera.fit(scene, view='auto', margin=0.05)

	Fit a camera to a Scene

Create a camera that fits the entire hight of the scene in the image plane.

	Parameters

	
	scene (Scene) – The scene to fit the camera to.

	view (str) – Select view

	margin (float) – Fraction of extra space to leave on the top and bottom of the scene.

view may be ‘auto’, ‘isometric’, or ‘front’.

The isometric view is an orthographic projection from a particular angle so that the x,y, and z directions
are equal lengths. The front view is an orthographic projection where +x points to the right, +y points up
and +z points out of the screen in the image plane. ‘auto’ automatically selects ‘isometric’ for 3D scenes
and ‘front’ for 2D scenes.

	
fresnel.camera.orthographic(position, look_at, up, height)

	Orthographic camera

	Parameters

	
	position (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3 : float32) - the position of the camera.

	look_at (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3 : float32) - the point the camera looks at (the center of the focal plane).

	up (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3 : float32) - a vector pointing up.

	height (float) – the height of the image plane.

An orthographic camera traces parallel rays from the image plane into the scene. Lines that are parallel in
the Scene will remain parallel in the rendered image.

position is the center of the image plane in Scene space. look_at is the point
in Scene space that will be in the center of the image. Together, these vectors define
the image plane which is perpendicular to the line from position to look_at. Objects in front of the plane will
appear in the rendered image, objects behind the plane will not.

up is a vector in Scene space that defines which direction points up (+y direction in the image).
up does not need to be perpendicular to the line from position to look_at, but it must not be parallel to that
line. height sets the height of the image in Scene units. The image width is determined by the
aspect ratio of the image. The area width by height about the look_at point will be included in the rendered
image.

TODO: show a figure

fresnel.color

Overview

	fresnel.color.linear

	Convert a sRGB [https://en.wikipedia.org/wiki/SRGB] color (or array of such colors) from the gamma corrected color space into the linear space.

Details

Color utilities.

	
fresnel.color.linear(color)

	Convert a sRGB [https://en.wikipedia.org/wiki/SRGB] color (or array of such colors) from the gamma corrected
color space into the linear space.

Standard tools for working with sRGB colors provide gamma corrected values. fresnel needs to perform calculations
in a linear color space. This method converts from sRGB to the linear space. Use linear() when specifying
material or particle colors with sRGB inputs (such as you find in a color picker).

linear() accepts RGBA [https://en.wikipedia.org/wiki/RGBA_color_space]
input (such as from matplotlib’s colors.to_rgba [https://matplotlib.org/api/_as_gen/matplotlib.colors.to_rgba.html] colormap method), but ignores the alpha
channel and outputs an Nx3 array.

	Parameters

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3, 4, Nx3, or Nx4 : float32) - RGB or RGBA
color in the range [0,1].

	Returns

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] with the linearized color(s), same shape as color.

fresnel.geometry

Overview

	fresnel.geometry.Geometry

	Base class for all geometry.

	fresnel.geometry.ConvexPolyhedron

	Convex polyhedron geometry.

	fresnel.geometry.Cylinder

	Cylinder geometry.

	fresnel.geometry.Polygon

	Polygon geometry.

	fresnel.geometry.Sphere

	Sphere geometry.

Details

Geometric primitives.

Geometry provides operations common to all geometry classes. Use a specific geometry class to add objects
to the fresnel.Scene.

See also

	Primitive properties
	Tutorial: Modifying primitive properties.

	Material properties
	Tutorial: Modifying material properties.

	Outline materials
	Tutorial: Applying outline materials.

	Multiple geometries
	Tutorial: Displaying multiple geometries in a scene.

	
class fresnel.geometry.ConvexPolyhedron(scene, polyhedron_info, position=None, orientation=None, color=None, N=None, material=<fresnel.material.Material object>, outline_material=<fresnel.material.Material object>, outline_width=0.0)

	Convex polyhedron geometry.

Define a set of convex polyhedron primitives. A convex polyhedron is defined by P outward facing planes
(origin and normal vector) and a radius that encompass the shape.
fresnel.util.convex_polyhedron_from_vertices() can construct this by computing the convex hull of a set
of vertices.

	Parameters

	
	scene (fresnel.Scene) – Add the geometry to this scene

	polyhedron_info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing the face normals (face_normal), origins (face_origin),
colors (face_color), and the radius (radius)).

	position (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Position of each polyhedra.

	orientation (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx4 : float32) - Orientation of each polyhedra (as a quaternion).

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Color of each polyhedron.

	N (int) – Number of spheres in the geometry. If None, determine N from position.

See also

	Convex polyhedron
	Tutorial: Defining and setting convex polyhedron geometry properties.

Note

The constructor arguments position, orientation, and color are optional. If you do not provide them,
they are initialized to 0’s.

Hint

Avoid costly memory allocations and type conversions by specifying primitive properties in the appropriate
numpy array type.

	
position

	Read or modify the positions of the polyhedra.

	Type

	fresnel.util.array

	
orientation

	Read or modify the orientations of the polyhedra.

	Type

	fresnel.util.array

	
color

	Read or modify the color of the polyhedra.

	Type

	fresnel.util.array

	
color_by_face

	Set to 0 to color particles by the per-particle color. Set to 1 to color faces by the per-face color. Set to a value between 0 and 1 to blend per-particle and per-face colors.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
get_extents()

	Get the extents of the geometry

	Returns

	[[minimum x, minimum y, minimum z],[maximum x, maximum y, maximum z]]

	
class fresnel.geometry.Cylinder(scene, points=None, radius=None, color=None, N=None, material=<fresnel.material.Material object>, outline_material=<fresnel.material.Material object>, outline_width=0.0)

	Cylinder geometry.

Define a set of spherocylinder primitives with start and end positions, radii, and individual colors.

	Parameters

	
	scene (fresnel.Scene) – Add the geometry to this scene

	points (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx2x3 : float32) - cylinder start and end points.

	radius (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (N : float32) - Radius of each cylinder.

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx2x3 : float32) - Color of each start and end point.

	N (int) – Number of cylinders in the geometry. If None, determine N from points.

See also

	Cylinder
	Tutorial: defining and setting cylinder geometry properties

Note

The constructor arguments points, radius, and color are optional. If you do not provide them,
they are initialized to 0’s.

Hint

Avoid costly memory allocations and type conversions by specifying primitive properties in the appropriate
numpy array type.

Tip

When all cylinders are the same size, pass a single value for radius and numpy will broadcast it to all
elements of the array.

	
points

	Read or modify the start and end points of the cylinders.

	Type

	fresnel.util.array

	
radius

	Read or modify the radii of the cylinders.

	Type

	fresnel.util.array

	
color

	Read or modify the colors of the start and end points of the cylinders.

	Type

	fresnel.util.array

	
get_extents()

	Get the extents of the geometry

	Returns

	[[minimum x, minimum y, minimum z],[maximum x, maximum y, maximum z]]

	
class fresnel.geometry.Geometry

	Base class for all geometry.

Geometry provides operations common to all geometry classes.

	
material

	The geometry’s material.

	Type

	fresnel.material.Material

	
outline_material

	The geometry’s outline material.

	Type

	fresnel.material.Material

	
outline_width

	The geometry’s outline width, in distance units in the scene’s coordinate system.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

Note

You cannot instantiate a Geometry directly. Use one of the sub classes.

	
disable()

	Disable the geometry.

When disabled, the geometry will not be present in the scene.

	
enable()

	Enable the geometry.

When enabled, the geometry will be present when rendering the scene.

	
remove()

	Remove the geometry from the scene.

After calling remove, the geometry is no longer part of the scene. It cannot be added back into the scene.
Use disable() if you want a reversible operation.

	
class fresnel.geometry.Mesh(scene, vertices, position=None, orientation=None, color=None, N=None, material=<fresnel.material.Material object>, outline_material=<fresnel.material.Material object>, outline_width=0.0)

	Mesh geometry.

Define a set of triangle mesh primitives.

	Parameters

	
	scene (fresnel.Scene) – Add the geometry to this scene

	vertices (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3Tx3 : float32) - Vertices of the triangles, listed
contiguously. Vertices 0,1,2 define the first triangle, 3,4,5 define the second, and so on.

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3Tx3 : float32) - Color of each vertex.

	position (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Positions of each mesh instance.

	orientation (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx4 : float32) - Orientation of each mesh instance (as a quaternion).

	N (int) – Number of mesh instances in the geometry. If None, determine N from position.

See also

	Mesh
	Tutorial: Defining and setting mesh geometry properties.

Note

The constructor arguments position, orientation, and color are optional, and just short-hand
for assigning the attribute after construction.

Colors are in the linearized sRGB color space. Use fresnel.color.linear() to convert standard sRGB colors
into this space. Mesh determines the color of a triangle using interpolation
with the barycentric coordinates in every triangular face.

Hint

Avoid costly memory allocations and type conversions by specifying primitive properties in the appropriate
numpy array type.

	
position

	Read or modify the positions of the mesh instances.

	Type

	fresnel.util.array

	
orientation

	Read or modify the orientations of the mesh instances.

	Type

	fresnel.util.array

	
color

	Read or modify the color of the vertices.

	Type

	fresnel.util.array

	
get_extents()

	Get the extents of the geometry

	Returns

	
	[[minimum x, minimum y, minimum z],
	[maximum x, maximum y, maximum z]]

	
class fresnel.geometry.Polygon(scene, vertices, position=None, angle=None, color=None, rounding_radius=0, N=None, material=<fresnel.material.Material object>, outline_material=<fresnel.material.Material object>, outline_width=0.0)

	Polygon geometry.

Define a set of simple polygon primitives. Each polygon face is always in the xy plane. Each polygon may
have a different color and rotation angle.

	Parameters

	
	scene (fresnel.Scene) – Add the geometry to this scene

	vertices (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx2 : float32) - Polygon vertices.

	position (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx2 : float32) - Position of each polygon.

	angle (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (N : float32) - Orientation angle of each polygon.

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Color of each polygon.

	rounding_radius (float) – Rounding radius for spheropolygons.

	N (int) – Number of polygons in the geometry. If None, determine N from position.

See also

	Polygon
	Tutorial: defining and setting polygon geometry properties

Note

The constructor arguments position, angle, and color are optional. If you do not provide them,
they are initialized to 0’s.

Hint

Avoid costly memory allocations and type conversions by specifying primitive properties in the appropriate
numpy array type.

	
position

	Read or modify the positions of the polygons.

	Type

	fresnel.util.array

	
angle

	Read or modify the orientation angles of the polygons.

	Type

	fresnel.util.array

	
color

	Read or modify the colors of the polygons.

	Type

	fresnel.util.array

	
get_extents()

	Get the extents of the geometry

	Returns

	[[minimum x, minimum y, minimum z],[maximum x, maximum y, maximum z]]

	
class fresnel.geometry.Sphere(scene, position=None, radius=None, color=None, N=None, material=<fresnel.material.Material object>, outline_material=<fresnel.material.Material object>, outline_width=0.0)

	Sphere geometry.

Define a set of sphere primitives with positions, radii, and individual colors.

	Parameters

	
	scene (fresnel.Scene) – Add the geometry to this scene

	position (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Positions of each sphere.

	radius (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (N : float32) - Radius of each sphere.

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float32) - Color of each sphere.

	N (int) – Number of spheres in the geometry. If None, determine N from position.

See also

	Sphere
	Tutorial: Defining and setting sphere geometry properties.

Note

The constructor arguments position, radius, and color are optional. If you do not provide them,
they are initialized to 0’s.

Hint

Avoid costly memory allocations and type conversions by specifying primitive properties in the appropriate
numpy array type.

Tip

When all spheres are the same size, pass a single value for radius and numpy will broadcast it to all
elements of the array.

	
position

	Read or modify the positions of the spheres.

	Type

	fresnel.util.array

	
radius

	Read or modify the radii of the spheres.

	Type

	fresnel.util.array

	
color

	Read or modify the color of the spheres.

	Type

	fresnel.util.array

	
get_extents()

	Get the extents of the geometry

	Returns

	[[minimum x, minimum y, minimum z],[maximum x, maximum y, maximum z]]

fresnel.interact

Overview

	fresnel.interact.SceneView

	View a fresnel Scene in real time

Details

Interactive Qt widgets.

	
class fresnel.interact.SceneView(scene, max_samples=2000)

	View a fresnel Scene in real time

SceneView is a PySide2 widget that displays a fresnel.Scene, rendering it with
fresnel.tracer.Path interactively. Use the mouse to rotate the camera view.

	Parameters

	
	scene (Scene) – The scene to display.

	max_samples (int) – Sample until max_samples have been averaged.

	Left click to pitch and yaw

	Right click to roll

	Middle click to pan

	Hold ctrl to make small adjustments

Using in a standalone script

To use SceneView in a standalone script, import the fresnel.interact module, create your fresnel.Scene, instantiate the
SceneView, show it, and start the app event loop.

import fresnel, fresnel.interact
build Scene
view = fresnel.interact.SceneView(scene)
view.show()
fresnel.interact.app.exec_();

Using with jupyter notebooks

To use SceneView in a jupyter notebook, import PySide2.QtCore and activate jupyter’s qt5 integration.

from PySide2 import QtCore
% gui qt

Import the fresnel.interact module, create your fresnel.Scene, and instantiate the
SceneView. Do not call the app event loop, jupyter is already running the event loop in the background.
When the SceneView object is the result of a cell, it will automatically show and activate focus.

import fresnel, fresnel.interact
build Scene
fresnel.interact.SceneView(scene)

Note

The interactive window will open on the system that hosts jupyter.

See also

	Interactive scene view
	Tutorial: Interactive scene display

	
setScene(scene)

	Set a new scene

	Parameters

	scene (Scene) – The scene to render.

Also call setScene when you make any changes to the scene so that SceneView window will re-render the scene
with the changes.

fresnel.light

Overview

	fresnel.light.Light

	Define a single light

	fresnel.light.butterfly

	Create a butterfly lighting setup.

	fresnel.light.cloudy

	Create a cloudy day lighting setup.

	fresnel.light.lightbox

	Create a light box lighting setup.

	fresnel.light.loop

	Create a loop lighting setup.

	fresnel.light.rembrandt

	Create a Rembrandt lighting setup.

	fresnel.light.ring

	Create a ring lighting setup.

Details

Lights provide light to a fresnel.Scene.

Without lights, nothing will be visible in the scene. Fresnel provides a number of quality lighting setups for your use,
and you can always define custom lights.

See also

	Scene properties
	Tutorial: Setting scene properties.

	Lighting setups
	Tutorial: Using lighting setups with scenes.

	
class fresnel.light.Light(direction, color=(1, 1, 1), theta=0.375)

	Define a single light

	Parameters

	
	direction (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3, float32) - Vector direction the light points (in camera space).

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3, float32) - Linear RGB color and intensity of the light.

	theta (float) – Half angle of the cone that defines the area of the light (radians).

The direction vector may have any non-zero length, but only the direction the vector points matters.

The color also sets the light intensity. A (0.5, 0.5, 0.5) light is twice as bright as (0.25, 0.25, 0.25).

	
fresnel.light.butterfly()

	Create a butterfly lighting setup.

The butterfly portrait lighting setup is front lighting with the key light (index 0) placed high above the camera
and the fill light (index 1) below the camera.

	Returns

	A list of lights.

	
fresnel.light.cloudy()

	Create a cloudy day lighting setup.

The cloudy lighting setup mimics a cloudy day. A strong light comes from all directions above. A weaker
light comes from all directions below (accounting for light “reflected” off the ground).
Use path tracing for best results with this setup.

	Returns

	A list of lights.

	
fresnel.light.lightbox()

	Create a light box lighting setup.

The light box lighting setup places a single massive area light that covers the top, bottom, left,
and right. Use path tracing for best results with this setup.

	Returns

	A list of lights.

	
fresnel.light.loop(side='right')

	Create a loop lighting setup.

The loop portrait lighting setup places the key light slightly to one side of the camera and slightly up (index 0).
The fill light is on the other side of the camera at the level of the camera (index 1).

	Parameters

	side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

	Returns

	A list of lights.

	
fresnel.light.rembrandt(side='right')

	Create a Rembrandt lighting setup.

The Rembrandt portrait lighting setup places the key light 45 degrees to one side of the camera and slightly up
(index 0). The fill light is on the other side of the camera at the level of the camera (index 1).

	Parameters

	side (str) – ‘right’ or ‘left’ to choose which side of the camera to place the key light.

	Returns

	A list of lights.

	
fresnel.light.ring()

	Create a ring lighting setup.

The ring lighting setup provides a strong front area light. This type of lighting is common
in fashion photography. Use path tracing for best results with this setup.

	Returns

	A list of lights.

fresnel.material

Overview

	fresnel.material.Material

	Define material properties.

Details

Materials describe the way light interacts with surfaces.

	
class fresnel.material.Material(solid=0, color=(0, 0, 0), primitive_color_mix=0, roughness=0.3, specular=0.5, spec_trans=0, metal=0)

	Define material properties.

Materials control how light interacts with the geometry.

	Parameters

	
	solid (float) – Set to 1 to pass through a solid color, regardless of the light and view angle.

	color (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (3, float32) - Linear RGB color of the material.

	primitive_color_mix (float) – Set to 1 to use the color provided in the Geometry, 0 to use the color
specified in the material, or a value in the range [0,1] to mix the two colors.

	roughness (float) – Roughness of the material. Nominally in the range [0.1,1].

	specular (float) – Control the strength of the specular highlights. Nominally in the range [0,1].

	spec_trans (float) – Control the amount of specular light transmission. In the range [0,1].

	metal (float) – Set to 0 for dielectric material, or 1 for metal. Intermediate values interpolate between
the two.

See also

	Material properties
	Tutorial: Modifying material properties.

Note

Colors are in the linearized color space. Use fresnel.color.linear() to convert standard sRGB colors
into this space.

fresnel.tracer

Overview

	fresnel.tracer.Path

	Path tracer.

	fresnel.tracer.Preview

	Preview ray tracer.

	fresnel.tracer.Tracer

	Base class for all ray tracers.

Details

Ray tracers process a fresnel.Scene and render output images.

Fresnel provides a Preview tracer to generate a quick approximate render
and Path which provides soft shadows, reflections, and other effects.

See also

	Introduction
	Tutorial: Introduction to tracers

	Tracer methods
	Tutorial: Configuring tracer parameters.

	
class fresnel.tracer.Path(device, w, h)

	Path tracer.

	Parameters

	
	device (Device) – Device to use for rendering.

	w (int) – Output image width.

	h (int) – Output image height.

The path tracer applies advanced lighting effects, including soft shadows, reflections, etc….
It operates by Monte Carlo sampling. Each call to render() performs one sample per pixel.
The output image is the mean of all the samples. Many samples are required to produce a smooth image.

sample() provides a convenience API to make many samples with a single call.

	
reset()

	Clear the output buffer and start sampling a new image. Increment the random number seed so that the
new image is statistically independent from the previous.

	
sample(scene, samples, reset=True, light_samples=1)

	
	Parameters

	
	scene (Scene) – The scene to render.

	samples (int) – The number of samples to take per pixel.

	reset (bool) – When True, call reset() before sampling

	Returns

	A reference to the current output buffer as a fresnel.util.image_array.

Note

When reset is False, subsequent calls to sample() will continue to add samples
to the current output image. Use the same number of light samples when sampling an image
in this way.

	
class fresnel.tracer.Preview(device, w, h, aa_level=0)

	Preview ray tracer.

	Parameters

	
	device (Device) – Device to use for rendering.

	w (int) – Output image width.

	h (int) – Output image height.

	aa_level (int) – Amount of anti-aliasing to perform

	
aa_level

	Amount of anti-aliasing to perform

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Overview

The Preview tracer produces a preview of the scene quickly. It approximates the effect of light
on materials. The output of the Preview tracer will look very similar to that from the Path
tracer, but will miss soft shadows, reflection, transmittance, and other lighting effects.

TODO: show examples

Anti-aliasing

Set aa_level to control the amount of anti-aliasing performed. The default value of 0 performs
no anti-aliasing to enable the fastest possible preview renders. A value of 1 samples 2x2 subpixels, a value of 2
samples 4x4 subpixels, a value of 3 samples 8x8 subpixels, etc … Samples are jittered with random numbers.
Different seed values will result in different output images.

TODO: show examples

Tip

Use aa_level = 3 when using the Preview tracer to render production quality output.

	
class fresnel.tracer.Tracer

	Base class for all ray tracers.

Tracer provides operations common to all ray tracer classes.

Each Tracer instance stores a pixel output buffer. When you render() a
Scene, the current data stored in the buffer is overwritten with the new image.

Note

You cannot instantiate a Tracer directly. Use one of the sub classes.

	
output

	Reference to the current output buffer (modified by render())

	Type

	fresnel.util.image_array

	
linear_output

	Reference to the current output buffer in linear color space (modified by render())

	Type

	fresnel.util.array

	
seed

	Random number seed.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
disable_highlight_warning()

	Disable the highlight clipping warnings.

	
enable_highlight_warning(color=(1, 0, 1))

	Enable highlight clipping warnings.

When a pixel in the rendered image is too bright to represent, make that pixel the given color to flag
the problem to the user.

	Parameters

	color (tuple) – Color to make the highlight warnings.

	
histogram()

	Compute a histogram of the image.

The histogram is computed as a lightness in the sRGB color space. The histogram is computed only over the
visible pixels in the image, fully transparent pixels are ignored. The returned histogram is nbins x 4,
the first column contains the lightness histogram and the next 3 contain R,B, and G channel histograms
respectively.

	Returns

	(histogram, bin_positions).

	
render(scene)

	Render a scene.

	Parameters

	scene (Scene) – The scene to render.

	Returns

	A reference to the current output buffer as a fresnel.util.image_array.

Render the given scene and write the resulting pixels into the output buffer.

	
resize(w, h)

	Resize the output buffer.

	Parameters

	
	w (int) – New output buffer width.

	h (int) – New output buffer height.

Warning

resize() clears any existing image in the output buffer.

fresnel.util

Overview

	fresnel.util.array

	Map internal fresnel buffers as numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects.

	fresnel.util.convex_polyhedron_from_vertices

	Convert convex polyhedron vertices to data structures that fresnel can draw.

	fresnel.util.image_array

	Map internal image buffers as numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects.

Details

Utilities.

	
class fresnel.util.array(buf, geom)

	Map internal fresnel buffers as numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects.

fresnel.util.array provides a python interface to access internal data of memory buffers stored and
managed by fresnel. You can access a fresnel.util.array as if it were a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] (with
limited operations). Below, slice is a slice [https://docs.python.org/3/glossary.html#term-slice] or array indexing [https://docs.scipy.org/doc/numpy/user/basics.indexing.html#module-numpy.doc.indexing] mechanic that
numpy understands.

Writing

Write to an array with array[slice] = v where v is numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], list [https://docs.python.org/3/library/stdtypes.html#list], or
scalar value to broadcast. When v is a contiguous numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of the same data type, the data is
copied directly from v into the internal buffer. Otherwise, it is converted to a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
before copying.

Reading

Read from an array with v = array[slice]. This returns a copy of the data as a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
each time it is called.

	
shape

	Dimensions of the array.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
dtype

	Numpy data type

	
fresnel.util.convex_polyhedron_from_vertices(vertices)

	Convert convex polyhedron vertices to data structures that fresnel can draw.

	Parameters

	vertices (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or array_like [https://docs.scipy.org/doc/numpy/glossary.html#term-array-like]) – (Nx3 : float64) - The vertices of the polyhedron.

	Returns

	A dict containing the information used to draw the polyhedron. The dict
contains the keys face_origin, face_normal, face_color, and radius.

The dictionary can be used directly to draw a polyhedron from its vertices:

scene = fresnel.Scene()
polyhedron = fresnel.util.convex_polyhedron_from_vertices(vertices)
geometry = fresnel.geometry.ConvexPolyhedron(scene,
 polyhedron,
 position=[0, 0, 0],
 orientation=[1, 0, 0, 0])

	
class fresnel.util.image_array(buf, geom)

	Map internal image buffers as numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects.

Inherits from array and provides all of its functionality, plus some additional convenience methods
specific to working with images. Images are represented as WxHx4 numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of uint8 values
in RGBA format.

When a image_array is the result of an image in a Jupyter notebook cell, Jupyter will
display the image.

License

Fresnel Open Source Software License Copyright (c) 2016-2019 The Regents of
the University of Michigan All rights reserved.

Fresnel may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
 may be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Credits

Fresnel Developers

Joshua A. Anderson, University of Michigan - Lead developer

	Vyas Ramasubramani, University of Michigan
	
	Sphere geometry (GPU)

	Review and discussions on API and design.

	Bryan Vansaders, University of Michigan
	
	Sphere geometry (CPU)

	Review and discussions on API and design.

Libraries

Fresnel links to the following libraries:

Python

Python is used under the Python license (http://www.python.org/psf/license/).

Embree

Embree [https://embree.github.io/] is used under the Apache License, 2.0:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

pybind11

pybind11 [https://github.com/pybind/pybind11/] is used under the BSD 3-clause license:

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

OptiX SDK

Portions of the OptiX SDK are used under the following license:

Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of NVIDIA CORPORATION nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Random123

Random123 is used to generate random numbers and is used under the following license:

Copyright 2010-2012, D. E. Shaw Research.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
 notice, this list of conditions, and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions, and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

* Neither the name of D. E. Shaw Research nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Intel TBB

Intel’s threaded building blocks library provides support for parallel execution on CPUS and is used under the following
license:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

	Index

	Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fresnel	
 Fresnel main package.

 	
 	
 fresnel.camera	
 Cameras.

 	
 	
 fresnel.color	
 Color utilities.

 	
 	
 fresnel.geometry	
 Geometric primitives.

 	
 	
 fresnel.interact	
 Interactive Qt widgets.

 	
 	
 fresnel.light	
 Lights.

 	
 	
 fresnel.material	
 Materials.

 	
 	
 fresnel.tracer	
 Ray tracers.

 	
 	
 fresnel.util	
 Utility classes.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U

_

 	
 	__version__ (in module fresnel)

A

 	
 	aa_level (fresnel.tracer.Preview attribute)

 	angle (fresnel.geometry.Polygon attribute)

 	
 	array (class in fresnel.util)

 	available_gpus (fresnel.Device attribute)

 	available_modes (fresnel.Device attribute)

B

 	
 	background_alpha (fresnel.Scene attribute)

 	background_color (fresnel.Scene attribute)

 	
 	basis (fresnel.camera.Camera attribute)

 	butterfly() (in module fresnel.light)

C

 	
 	Camera (class in fresnel.camera)

 	camera (fresnel.Scene attribute)

 	cloudy() (in module fresnel.light)

 	color (fresnel.geometry.ConvexPolyhedron attribute)

 	(fresnel.geometry.Cylinder attribute)

 	(fresnel.geometry.Mesh attribute)

 	(fresnel.geometry.Polygon attribute)

 	(fresnel.geometry.Sphere attribute)

 	
 	color_by_face (fresnel.geometry.ConvexPolyhedron attribute)

 	convex_polyhedron_from_vertices() (in module fresnel.util)

 	ConvexPolyhedron (class in fresnel.geometry)

 	Cylinder (class in fresnel.geometry)

D

 	
 	Device (class in fresnel)

 	device (fresnel.Scene attribute)

 	
 	disable() (fresnel.geometry.Geometry method)

 	disable_highlight_warning() (fresnel.tracer.Tracer method)

 	dtype (fresnel.util.array attribute)

E

 	
 	enable() (fresnel.geometry.Geometry method)

 	
 	enable_highlight_warning() (fresnel.tracer.Tracer method)

F

 	
 	fit() (in module fresnel.camera)

 	fresnel (module)

 	fresnel.camera (module)

 	fresnel.color (module)

 	fresnel.geometry (module)

 	
 	fresnel.interact (module)

 	fresnel.light (module)

 	fresnel.material (module)

 	fresnel.tracer (module)

 	fresnel.util (module)

G

 	
 	Geometry (class in fresnel.geometry)

 	get_extents() (fresnel.geometry.ConvexPolyhedron method)

 	(fresnel.Scene method)

 	(fresnel.geometry.Cylinder method)

 	(fresnel.geometry.Mesh method)

 	(fresnel.geometry.Polygon method)

 	(fresnel.geometry.Sphere method)

H

 	
 	height (fresnel.camera.Camera attribute)

 	
 	histogram() (fresnel.tracer.Tracer method)

I

 	
 	image_array (class in fresnel.util)

L

 	
 	Light (class in fresnel.light)

 	lightbox() (in module fresnel.light)

 	lights (fresnel.Scene attribute)

 	
 	linear() (in module fresnel.color)

 	linear_output (fresnel.tracer.Tracer attribute)

 	look_at (fresnel.camera.Camera attribute)

 	loop() (in module fresnel.light)

M

 	
 	Material (class in fresnel.material)

 	material (fresnel.geometry.Geometry attribute)

 	
 	Mesh (class in fresnel.geometry)

 	mode (fresnel.Device attribute)

O

 	
 	orientation (fresnel.geometry.ConvexPolyhedron attribute)

 	(fresnel.geometry.Mesh attribute)

 	orthographic() (in module fresnel.camera)

 	
 	outline_material (fresnel.geometry.Geometry attribute)

 	outline_width (fresnel.geometry.Geometry attribute)

 	output (fresnel.tracer.Tracer attribute)

P

 	
 	Path (class in fresnel.tracer)

 	pathtrace() (in module fresnel)

 	points (fresnel.geometry.Cylinder attribute)

 	Polygon (class in fresnel.geometry)

 	position (fresnel.camera.Camera attribute)

 	(fresnel.geometry.ConvexPolyhedron attribute)

 	(fresnel.geometry.Mesh attribute)

 	(fresnel.geometry.Polygon attribute)

 	(fresnel.geometry.Sphere attribute)

 	
 	Preview (class in fresnel.tracer)

 	preview() (in module fresnel)

R

 	
 	radius (fresnel.geometry.Cylinder attribute)

 	(fresnel.geometry.Sphere attribute)

 	rembrandt() (in module fresnel.light)

 	remove() (fresnel.geometry.Geometry method)

 	
 	render() (fresnel.tracer.Tracer method)

 	reset() (fresnel.tracer.Path method)

 	resize() (fresnel.tracer.Tracer method)

 	ring() (in module fresnel.light)

S

 	
 	sample() (fresnel.tracer.Path method)

 	Scene (class in fresnel)

 	SceneView (class in fresnel.interact)

 	
 	seed (fresnel.tracer.Tracer attribute)

 	setScene() (fresnel.interact.SceneView method)

 	shape (fresnel.util.array attribute)

 	Sphere (class in fresnel.geometry)

T

 	
 	Tracer (class in fresnel.tracer)

U

 	
 	up (fresnel.camera.Camera attribute)

 _images/examples_02-Advanced-topics_02-Tracer-methods_16_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_20_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_10_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_12_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_22_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_24_1.png

_images/cuboid-hires.png

_images/examples_02-Advanced-topics_01-Devices_18_0.png

_images/examples_02-Advanced-topics_01-Devices_21_0.png

_images/examples_02-Advanced-topics_00-Multiple-geometries_8_0.png

_images/examples_02-Advanced-topics_01-Devices_17_0.png

_images/cuboid.png
> N
s 954
Y

nav.xhtml

 Table of Contents

 		
 Fresnel

 		
 Gallery

 		
 Research

 		
 Protomer

 		
 Features

 		
 Cuboids

 		
 Spheres

 		
 Installation

 		
 Anaconda package

 		
 Docker images

 		
 Compile from source

 		
 Prerequisites

 		
 Optional dependencies

 		
 Compile

 		
 Run tests

 		
 Build user documentation

 		
 Specify search paths

 		
 Build C++ Documentation

 		
 Change log

 		
 v0.9.0 (2019-04-30)

 		
 v0.8.0 (2019-03-05)

 		
 v0.7.1 (2019-02-05)

 		
 v0.7.0 (2019-02-05)

 		
 v0.6.0 (2018-07-06)

 		
 v0.5.0 (2017-07-27)

 		
 v0.4.0 (2017-04-03)

 		
 v0.3.0 (2017-03-09)

 		
 v0.2.0 (2017-03-03)

 		
 v0.1.0 (2017-02-02)

 		
 User community

 		
 fresnel-users mailing list

 		
 Issue tracker

 		
 Contribute

 		
 Introduction

 		
 Define a scene

 		
 Add geometry to the scene

 		
 Render the scene

 		
 Save output

 		
 Primitive properties

 		
 Setting properties when creating the geometry

 		
 Changing properties after creation

 		
 Reading primitive properties

 		
 Common errors

 		
 Material properties

 		
 Material color

 		
 Solid color materials

 		
 Geometry / primitive color mixing

 		
 All properties

 		
 Examples

 		
 Outline materials

 		
 Enabling outlines

 		
 Outline material properties

 		
 Scene properties

 		
 Background color and alpha

 		
 Light sources

 		
 Camera

 		
 Lighting setups

 		
 Lighting presets

 		
 Light box

 		
 Cloudy

 		
 Rembrandt

 		
 Loop lighting

 		
 Butterfly lighting

 		
 Ring lighting

 		
 Custom lights

 		
 Sphere

 		
 Geometric properties

 		
 Color

 		
 Outlines

 		
 Cylinder

 		
 Geometric properties

 		
 Color

 		
 Outlines

 		
 Convex polyhedron

 		
 Geometric properties

 		
 Color

 		
 Outlines

 		
 Mesh

 		
 Geometric properties

 		
 Color

 		
 Outlines

 		
 Polygon

 		
 Geometric properties

 		
 Color

 		
 Outlines

 		
 Rounded polygons

 		
 Multiple geometries

 		
 Create multiple geometries

 		
 Disable geometries

 		
 Remove geometry

 		
 Devices

 		
 The default device

 		
 Query available execution modes

 		
 Choose execution hardware

 		
 Attach a scene to a device

 		
 Memory consumption

 		
 Tracer methods

 		
 Common Tracer operations

 		
 Rendering and accessing output images

 		
 Evaluate image exposure

 		
 Resizing the output buffer

 		
 The Preview tracer

 		
 The Path tracer

 		
 Interactive scene view

 		
 SceneView widget

 		
 Rendering images in matplotlib

 		
 fresnel

 		
 fresnel.camera

 		
 fresnel.color

 		
 fresnel.geometry

 		
 fresnel.interact

 		
 fresnel.light

 		
 fresnel.material

 		
 fresnel.tracer

 		
 fresnel.util

 		
 License

 		
 Credits

 		
 Fresnel Developers

 		
 Libraries

 		
 Python

 		
 Embree

 		
 pybind11

 		
 OptiX SDK

 		
 Random123

 		
 Intel TBB

 		
 Index

_images/examples_00-Basic-tutorials_00-Introduction_15_0.png

_images/examples_00-Basic-tutorials_00-Introduction_17_0.png

_images/examples_00-Basic-tutorials_00-Introduction_11_0.png

_images/examples_00-Basic-tutorials_00-Introduction_13_0.png

_images/examples_00-Basic-tutorials_01-Primitive-properties_13_0.png

_images/examples_00-Basic-tutorials_01-Primitive-properties_15_0.png

_images/examples_00-Basic-tutorials_00-Introduction_26_0.jpeg

_images/examples_00-Basic-tutorials_01-Primitive-properties_10_0.png

_images/examples_00-Basic-tutorials_01-Primitive-properties_4_0.png

_images/examples_00-Basic-tutorials_01-Primitive-properties_7_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_10_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_21_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_23_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_13_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_16_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_4_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_7_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_25_0.png

_images/examples_00-Basic-tutorials_02-Material-properties_27_0.png

_images/examples_00-Basic-tutorials_03-Outline-materials_18_0.png
e

_images/examples_00-Basic-tutorials_03-Outline-materials_21_0.png

_images/examples_00-Basic-tutorials_03-Outline-materials_15_0.png

_images/examples_00-Basic-tutorials_03-Outline-materials_8_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_10_0.png

_images/examples_00-Basic-tutorials_03-Outline-materials_24_0.png

_images/examples_00-Basic-tutorials_03-Outline-materials_6_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_19_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_13_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_16_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_7_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_10_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_25_0.png

_images/examples_00-Basic-tutorials_04-Scene-properties_28_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_16_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_19_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_12_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_14_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_21_0.png

_images/examples_02-Advanced-topics_04-Rendering-images-in-matplotlib_6_0.png
The Platonic Solids

Tetrahedron Cube Octahedron

|

Dodecahedron Icosahedron

_images/examples_00-Basic-tutorials_05-Lighting-setups_23_0.png

_images/protomer.png

_images/protomer-hires.png

_images/sphere.png
€Cetee% (O

(€04 (R
€05 aed(s,

Celu et~ (og
CCCCX LTy
(@eerie2ee e i®§

< $

_images/sphere-hires.png
€
*“d(we€€e% ¢

N CCLCCT (T8
0 cga s e :.

.;.....2.... f

6 @ete TS:.
(L .:..:.‘.,..

C (

Sd .::. eteeaee
@¢a: e (e« (E9¢

N\ ‘\t“ ‘.‘\.‘Q‘A
o ®gers ...
.: . ‘
... o
..:;.
A
‘ ..‘

(¢
(oL
) ..

_images/examples_02-Advanced-topics_02-Tracer-methods_42_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_39_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_49_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_45_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_55_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_53_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_32_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_4_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_27_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_29_0.png
1000

£

&0

00

20

o0 o2 o o o8 10

_images/examples_01-Primitives_00-Sphere-geometry_11_0.png

_images/examples_01-Primitives_00-Sphere-geometry_14_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_6_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_8_0.png

_images/examples_01-Primitives_00-Sphere-geometry_8_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_30_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_28_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_37_0.png

_images/examples_02-Advanced-topics_02-Tracer-methods_35_0.png

_images/examples_00-Basic-tutorials_05-Lighting-setups_25_0.png
£

&0

00

20

o0 o2 os o6 o8 10

_images/examples_01-Primitives_02-Convex-polyhedron-geometry_13_0.png

_images/examples_01-Primitives_02-Convex-polyhedron-geometry_15_0.png

_images/examples_01-Primitives_01-Cylinder-geometry_8_0.png

_images/examples_01-Primitives_02-Convex-polyhedron-geometry_11_0.png

_images/examples_01-Primitives_03-Mesh-geometry_14_0.png

_images/examples_01-Primitives_03-Mesh-geometry_16_0.png

_images/examples_01-Primitives_02-Convex-polyhedron-geometry_9_0.png

_images/examples_01-Primitives_03-Mesh-geometry_11_0.png

_images/examples_01-Primitives_01-Cylinder-geometry_11_0.png

_images/examples_01-Primitives_01-Cylinder-geometry_14_0.png

_images/examples_01-Primitives_04-Polygon-geometry_17_0.png

_images/examples_01-Primitives_04-Polygon-geometry_8_0.png

_images/examples_01-Primitives_04-Polygon-geometry_11_0.png

_images/examples_01-Primitives_04-Polygon-geometry_14_0.png

_images/examples_02-Advanced-topics_00-Multiple-geometries_5_0.png

_images/examples_02-Advanced-topics_00-Multiple-geometries_11_0.png

_images/examples_02-Advanced-topics_00-Multiple-geometries_14_0.png

_static/minus.png

_static/file.png

_static/plus.png

_images/examples_01-Primitives_03-Mesh-geometry_5_0.png

_images/examples_01-Primitives_03-Mesh-geometry_8_0.png

_images/examples_01-Primitives_03-Mesh-geometry_17_0.png

